小白的机器学习实战——向量,矩阵和数组

简介: 创建矩阵import numpy as np# 创建矩阵matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], ...

创建矩阵

import numpy as np
# 创建矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9],
                   [10, 11, 12]])

向量

# 行向量
vector_row = np.array([1, 2, 3])
# 列向量
vector_column = np.array([[1],
                          [2],
                          [3]])

计算平均值,方差和标准偏差

# 计算均值
np.mean(matrix)
>>> 6.5
# 计算方差
np.var(matrix)
>>> 11.916666666666666
# 计算标准差
np.std(matrix)
>>> 3.4520525295346629

重塑矩阵

# 第二维可以为-1让程序自己推断,如matrix.reshape(2, -1)
matrix.reshape(2, 6)
>>> array([[ 1,  2,  3,  4,  5,  6],
       [ 7,  8,  9, 10, 11, 12]])
    

矩阵加减法

# 创建矩阵a
matrix_a = np.array([[1, 1, 1],
                     [1, 1, 1],
                     [1, 1, 2]])

# 创建矩阵b
matrix_b = np.array([[1, 3, 1],
                     [1, 3, 1],
                     [1, 3, 8]])
                     
# 矩阵相加
np.add(matrix_a, matrix_b)
array([[ 2,  4,  2],
       [ 2,  4,  2],
       [ 2,  4, 10]])

# 矩阵相减
np.subtract(matrix_a, matrix_b)
array([[ 0, -2,  0],
       [ 0, -2,  0],
       [ 0, -2, -6]])

对矩阵元素进行操作

# 创建一个方法:对每个元素加10
add_100 = lambda i: i + 10

# 在对numpy的数组进行操作时,我们应该尽量避免循环操作,尽可能利用矢量化函数来避免循环。但是,直接将自定义函数应用在numpy数组之上会报错,我们需要将函数进行矢量化转换.
vectorized_add_100 = np.vectorize(add_100)

# 最后将函数应用到矩阵上
vectorized_add_100(matrix)
>>> array([[11, 12, 13],
           [14, 15, 16],
           [17, 18, 19],
           [20, 21, 22]])

创建稀疏矩阵

# 创建一个矩阵,其中零元素远远多于非零元素
matrix = np.array([[0, 0],
                   [1, 0],
                   [0, 6]])
# 由于稀疏矩阵中非零元素较少,零元素较多,因此可以采用只存储非零元素的方法来进行压缩存储。
# 另外对于很多元素为零的稀疏矩阵,仅存储非零元素可使矩阵操作效率更高,速度更快。
# python不能自动创建稀疏矩阵,所以要用scipy中特殊的命令来得到稀疏矩阵。
from scipy import sparse
matrix_sparse = sparse.csr_matrix(matrix)

描述一个矩阵

# 查看行和列
matrix.shape
>>> (4, 3)
# 查看所有元素个数(行*列)
matrix.size
>>> 12
# 查看维数
matrix.ndim
>>> 2

最大值和最小值

# 最大值
np.max(matrix)
>>> 12
# 最小值
np.min(matrix)
>>> 1
# 按列查找最大元素
np.max(matrix, axis=0)
>>> array([10, 11, 12])
# 按行查找最大元素
np.max(matrix, axis=1)
>>> array([3, 6, 9,12])

矩阵求逆

# 创建一个新矩阵
matrix_n = np.array([[1, 2],
                   [3, 4]])
# 计算逆矩阵
np.linalg.inv(matrix_n)
>>> array([[-2. ,  1. ],
       [ 1.5, -0.5]])

展平矩阵

matrix.flatten()
>>> array([1, 2, 3, 4, 5, 6, 7, 8, 9])

元素选择

# 对一个向量
vector = np.array([1, 2, 3, 4, 5, 6])
vector[1]
>>> 2
# 对于一个矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])
matrix[1,1]
>>> 5
对于一个张量(高维矩阵)
tensor = np.array([
    [[[1, 1], [1, 1]], [[2, 2], [2, 2]]],
    [[[3, 3], [3, 3]], [[4, 4], [4, 4]]]
                  ])
tensor[1,1,1]
>>> array([4, 4])

计算矩阵点乘(对应位置相乘之后再相加)

vector_a = np.array([1,2,3])
vector_b = np.array([4,5,6])
# 方法一
np.dot(vector_a, vector_b)
>>> 32
# 方法二
vector_a @ vector_b
>>> 32

计算矩阵的行列式(The Determinant Of A Matrix)、矩阵的迹(The Trace Of A Matrix)和矩阵的秩(The Rank Of A Matrix)

matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])
# 行列式:行列式(Determinant)是数学中的一个函数,将一个 n*n的矩阵A映射到一个标量,记作det(A)或|A|
np.linalg.det(matrix)
>>> -9.5161973539299405e-16

# 迹:在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。
# 先获得矩阵的对角线
matrix.diagonal()
>>> array([1, 5, 9])
# 对角线求和就是迹
matrix.diagonal().sum()
>>> 15
# 秩:在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。
np.linalg.matrix_rank(matrix)
>>> 2

矢量或矩阵转置

# 创建一个矢量
vector = np.array([1, 2, 3, 4, 5, 6])
# 转置
vector.T
>>> array([1, 2, 3, 4, 5, 6])

# 创建一个矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])
# 转置
matrix.T
>>> array([[1, 4, 7],
          [2, 5, 8],
          [3, 6, 9]])

参考:https://chrisalbon.com/

目录
相关文章
|
6月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
486 46
|
8月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
9月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
9月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
570 3
|
9月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
10月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
282 2
|
10月前
|
人工智能 自然语言处理 网络安全
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
10月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
854 2
|
10月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
706 3
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
610 8