python-GIL、死锁递归锁及线程补充

简介: 一、GIL介绍 GIL全称 Global Interpreter Lock ,中文解释为全局解释器锁。它并不是Python的特性,而是在实现python的主流Cpython解释器时所引入的一个概念,GIL本质上就是一把互斥锁,将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,从而保证数据的安全性。

一、GIL介绍

GIL全称 Global Interpreter Lock ,中文解释为全局解释器锁。它并不是Python的特性,而是在实现python的主流Cpython解释器时所引入的一个概念,GIL本质上就是一把互斥锁,将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,从而保证数据的安全性。

注:每次执行python程序,都会产生一个独立的进程,进程里除了能看到的若干线程,还有看不见的解释器开启的垃圾回收等解释器级别的线程。

#1 所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)
例如:test.py定义一个函数work(代码内容如下图),在进程内所有线程都能访问到work的代码,于是我们可以开启四个线程然后target都指向该代码,能访问到意味着就是可以执行。

#2 所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器的代码。

多个线程先访问到解释器的代码,去拿去执行权限,然后将自己target的代码拿给解释器去执行,解释器的代码是对所有线程都共享的,这个时候就存在一个问题,垃圾回收线程也可以去访问解释器代码,对于同一个数据,可能线程1去修改它的数据的同时 垃圾回收对他执行的是回收操作,这个时候就会导致很多无法预料的bug。GIL加锁处理,就是保证解释器同一时间内只能执行一个任务的代码。这就导致了同一个进程下的线程无法实现并行,不能很好的利用cpu的多核机制,但是还是可以实现并发的。(如果想实现并行只能开启多个进程)

二、GIL与Lock的区别

GIL保护的是解释器级别的数据,但是用户自己的数据需要自己加锁处理。

from threading import Thread,Lock
import time

mutex=Lock()
n=100
def task():
    global n
    with mutex:
        temp=n
        time.sleep(0.1)
        n=temp-1

if __name__ == '__main__':
    l=[]
    for i in range(100):
        t=Thread(target=task)
        l.append(t)
        t.start()

    for t in l:
        t.join()
    print(n)
test

通过自定义互斥锁,每个线程除了要抢到GIL锁之外还要抢到自定义的锁,否则即使抢到了GIL也没有用,这就充分保证了数据的安全性。

三、GIL与多线程

既然有了GIL的存在,一个进程中同一时刻只有一个线程能够被执行,无法利用cpu的多核机制,和多进程一比,是不是多进程反而更占优势了呢。

那多核机制有什么好处呢?

cpu是用来做计算的,多核,意味多个cpu去完成计算功能,提升计算性能,但是cpu一旦遇到 I/O操作,那么多核对I/O就没有什么帮助了。

#计算操作
from multiprocessing import Process
import os,time
from threading import Thread

def work():
    res=0
    for i in range(100000000):
        res+=i

if __name__ == '__main__':
    print(os.cpu_count())

    p_l =[]
    start = time.time()
    for i in range(4):
        p = Process(target=work)#5.057471036911011
        # p = Thread(target=work)#18.38089609146118
        p.start()
        p_l.append(p)

    for j in p_l:
        j.join()
    print('time is %s'%(time.time()-start))
计算操作
#io操作
from threading import Thread
from multiprocessing import Process
import time

def work():
    time.sleep(4)

if __name__ == '__main__':
    p_l = []
    start = time.time()
    for i in range(4):
        p = Process(target=work)#4.281008243560791
        # p = Thread(target=work)#4.002274751663208
        p_l.append(p)
        p.start()
    for j in p_l:
        j.join()
    print(p_l)
    print('time is %s' % (time.time() - start))
I/O操作

总结:

  多线程用于I/O密集型,如socket,爬虫,web等

  多进程用于计算密集型,如金融分析等。

 四、死锁与递归锁

死锁:两个或两个以上的进程或者线程在执行过程中,因为争夺资源而造成的互相等待现象,若无外力的作用,都将一直处于阻塞状态,这些互相等待的进程或者线程就被称为死锁。

from threading import Thread,Lock
import time
mutexA=Lock()
mutexB=Lock()

class MyThread(Thread):
    def run(self):
        self.func1()
        self.func2()
    def func1(self):
        mutexA.acquire()
        print('\033[41m%s 拿到A锁\033[0m' %self.name)

        mutexB.acquire()
        print('\033[42m%s 拿到B锁\033[0m' %self.name)
        mutexB.release()

        mutexA.release()

    def func2(self):
        mutexB.acquire()
        print('\033[43m%s 拿到B锁\033[0m' %self.name)
        time.sleep(2)

        mutexA.acquire()
        print('\033[44m%s 拿到A锁\033[0m' %self.name)
        mutexA.release()

        mutexB.release()

if __name__ == '__main__':
    for i in range(10):
        t=MyThread()
        t.start()

'''
Thread-1 拿到A锁
Thread-1 拿到B锁
Thread-1 拿到B锁
Thread-2 拿到A锁
然后就卡住,死锁了
'''
test

解决方法,使用递归锁(RLock)

这个RLock内部有一个Lock和一个counter变量,counter记录着acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:

from threading import Thread,Lock,RLock
import time

mutexB=mutexA=RLock()
#一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止

class Mythead(Thread):
    def run(self):
        self.f1()
        self.f2()

    def f1(self):
        mutexA.acquire()
        print('%s 抢到A锁' %self.name)
        mutexB.acquire()
        print('%s 抢到B锁' %self.name)
        mutexB.release()
        mutexA.release()

    def f2(self):
        mutexB.acquire()
        print('%s 抢到了B锁' %self.name)
        time.sleep(2)
        mutexA.acquire()
        print('%s 抢到了A锁' %self.name)
        mutexA.release()
        mutexB.release()

if __name__ == '__main__':
    for i in range(100):
        t=Mythead()
        t.start()
test

五、信号量Semaphore

Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。

from threading import Thread,Semaphore
import time,random
sm=Semaphore(5)#最大连接数为5

def task(name):
    sm.acquire()
    print('%s 正在上厕所' %name)
    time.sleep(random.randint(1,3))
    sm.release()

if __name__ == '__main__':
    for i in range(20):
        t=Thread(target=task,args=('路人%s' %i,))
        t.start()
test

六、Event

线程的一个关键特性是每个线程都是独立运行且状态不可预测。如果程序中的其他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时就需要用到threading中的Event对象。对象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

from threading import Thread,Event
import time

event=Event()

def light():
    print('红灯正亮着')
    time.sleep(3)
    event.set() #绿灯亮

def car(name):
    print('车%s正在等绿灯' %name)
    event.wait() #等灯绿
    print('车%s通行' %name)

if __name__ == '__main__':
    # 红绿灯
    t1=Thread(target=light)
    t1.start()
    #
    for i in range(10):
        t=Thread(target=car,args=(i,))
        t.start()
test

七、queue补充

线程的queue和进程一样,这里补充一下queue.LifoQueue()和queue.PriorityQueue()优先级

queue.LifoQueue() 后进先出---->堆栈

q=queue.LifoQueue(3)
q.put(1)
q.put(2)
q.put(3)
print(q.get())#3
print(q.get())#2
print(q.get())#1
queue.LifoQueue

queue.PriorityQueue() 设置优先级别,数字越小,优先级别越高

q=queue.PriorityQueue(3) #优先级,优先级用数字表示,数字越小优先级越高
q.put((10,'a'))
q.put((-1,'b'))
q.put((100,'c'))
print(q.get())#(-1, 'b')
print(q.get())#(10, 'a')
print(q.get())#(100, 'c')
PriorityQueue

 

焚膏油以继晷,恒兀兀以穷年。
相关文章
|
3月前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
25天前
|
Java 关系型数据库 MySQL
【JavaEE“多线程进阶”】——各种“锁”大总结
乐/悲观锁,轻/重量级锁,自旋锁,挂起等待锁,普通互斥锁,读写锁,公不公平锁,可不可重入锁,synchronized加锁三阶段过程,锁消除,锁粗化
|
2月前
|
供应链 安全 NoSQL
PHP 互斥锁:如何确保代码的线程安全?
在多线程和高并发环境中,确保代码段互斥执行至关重要。本文介绍了 PHP 互斥锁库 `wise-locksmith`,它提供多种锁机制(如文件锁、分布式锁等),有效解决线程安全问题,特别适用于电商平台库存管理等场景。通过 Composer 安装后,开发者可以利用该库确保在高并发下数据的一致性和安全性。
47 6
|
2月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
2月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
71 2
|
2月前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
132 4
|
2月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
35 0
|
2月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
82 0
|
28天前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
61 1