【译Py】2018年8月,GitHub上的Python数据科学明星项目:自动化机器学习、自然语言处理、可视化、机器学习工作流

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 原文作者:Matthew Mayo原文地址:GitHub Python Data Science Spotlight: AutoML, NLP, Visualization, ML WorkflowsPython数据分析本文是“五个不容忽视的机器学习项目”一文的续篇。

原文作者:Matthew Mayo
原文地址:GitHub Python Data Science Spotlight: AutoML, NLP, Visualization, ML Workflows

img_c335e712aa5f2496a92adfb666192919.jpe
Python数据分析

本文是“五个不容忽视的机器学习项目”一文的续篇。和上篇文章相比,这次选出的项目涉及更多数据科学领域,并且都是GitHub上的开源项目,我们为每个项目都附上了Repo、文档和入门指南的链接,并对每个项目进行了简单介绍。
下面一起来了解一下这些新兴的热门Python库吧,希望本文对你的工作能有所帮助:

  1. Auto-Keras自动机器学习库
    项目链接:https://github.com/jhfjhfj1/autokeras
    文档:http://autokeras.com
    入门指南:https://autokeras.com/#example
    Auto-Keras是用于自动机器学习(AutoML)的开源软件库。自动机器学习的最终目标是让仅拥有一定数据科学知识或机器学习背景的行业专家可以轻松地应用深度学习模型。Auto-Keras提供了很多用于自动研究深度学习模型架构与超参数的函数。
  2. Finetune Scikit-Learn风格的自然语言处理模型微调器
    项目链接:https://github.com/IndicoDataSolutions/finetune
    文档:https://finetune.indico.io
    入门指南:https://finetune.indico.io
    Finetune提供了“通过生成式预训练改进对语言的理解”的预训练语言模型,并扩充了OpenAI/finetune-language-model库。
  3. GluonNLP - 让自然语言处理变得更简单
    项目链接:https://github.com/dmlc/gluon-nlp
    文档:http://gluon-nlp.mxnet.io
    入门指南: https://github.com/dmlc/gluon-nlp#quick-start-guide
    GluonNLP可以使文本处理、数据加载及构建神经模型变得更容易,加快自然语言处理研究的速度。
  4. animatplot - 基于Matplotlib的Python动图库
    项目链接:https://github.com/t-makaro/animatplot
    文档:https://animatplot.readthedocs.io/en/latest
    入门指南: https://animatplot.readthedocs.io/en/latest/tutorial/getting_started.html
    请注意,本库文档里的例子比较简单,本文引用的是该库在GitHub上列出的功能更全、形式更酷的示例图。
    img_37ebbad1a368b88b3cfcaf9afa3bcc5a.gif
    animatplot
  5. MLflow - 机器学习生命周期的开源平台
    项目链接:https://github.com/mlflow/mlflow
    文档:https://mlflow.org/docs/latest/index.html
    入门指南:https://mlflow.org/docs/latest/quickstart.html
    MLflow是用来管理机器学习整体生命周期的开源平台,这个平台提供了以下主要三个功能:
  • MLflow Tracking:跟踪实验,以用来记录和比较机器学习的参数。
  • MLflow Projects:以可复用、可再现的形式,将机器学习的代码进行打包,以便分享给其他数据科学家或传递给生产环境。
  • MLflow Models:管理各类机器学习库中的模型,并部署到不同的模型服务及应用平台。
    MLflow通过访问REST API和CLI实现其功能,所以它不依赖于某个库,并且支持多种机器学习库与编程语言,为了使用方便,它还内置了Python API。
相关文章
|
2月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
【10月更文挑战第6天】如何使用机器学习模型来自动化评估数据质量?
|
18天前
|
关系型数据库 MySQL Java
【Docker最新版教程】一文带你快速入门Docker常见用法,实现容器编排和自动化部署上线项目
Docker快速入门到项目部署,MySQL部署+Nginx部署+docker自定义镜像+docker网络+DockerCompose项目实战一文搞定!
|
27天前
|
运维 监控 Python
自动化运维:使用Python脚本简化日常任务
【10月更文挑战第36天】在数字化时代,运维工作的效率和准确性成为企业竞争力的关键。本文将介绍如何通过编写Python脚本来自动化日常的运维任务,不仅提高工作效率,还能降低人为错误的风险。从基础的文件操作到进阶的网络管理,我们将一步步展示Python在自动化运维中的应用,并分享实用的代码示例,帮助读者快速掌握自动化运维的核心技能。
65 3
|
28天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
1月前
|
运维 监控 应用服务中间件
自动化运维:如何利用Python脚本提升工作效率
【10月更文挑战第30天】在快节奏的IT行业中,自动化运维已成为提升工作效率和减少人为错误的关键技术。本文将介绍如何使用Python编写简单的自动化脚本,以实现日常运维任务的自动化。通过实际案例,我们将展示如何用Python脚本简化服务器管理、批量配置更新以及监控系统性能等任务。文章不仅提供代码示例,还将深入探讨自动化运维背后的理念,帮助读者理解并应用这一技术来优化他们的工作流程。
|
1月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
57 4
|
2月前
|
测试技术
自动化测试项目学习笔记(五):Pytest结合allure生成测试报告以及重构项目
本文介绍了如何使用Pytest和Allure生成自动化测试报告。通过安装allure-pytest和配置环境,可以生成包含用例描述、步骤、等级等详细信息的美观报告。文章还提供了代码示例和运行指南,以及重构项目时的注意事项。
238 1
自动化测试项目学习笔记(五):Pytest结合allure生成测试报告以及重构项目
|
1月前
|
运维 监控 Linux
自动化运维:如何利用Python脚本优化日常任务##
【10月更文挑战第29天】在现代IT运维中,自动化已成为提升效率、减少人为错误的关键技术。本文将介绍如何通过Python脚本来简化和自动化日常的运维任务,从而让运维人员能够专注于更高层次的工作。从备份管理到系统监控,再到日志分析,我们将一步步展示如何编写实用的Python脚本来处理这些任务。 ##
|
1月前
|
机器学习/深度学习
自动化机器学习研究MLR-Copilot:利用大型语言模型进行研究加速
【10月更文挑战第21天】在科技快速发展的背景下,机器学习研究面临诸多挑战。为提高研究效率,研究人员提出了MLR-Copilot系统框架,利用大型语言模型(LLM)自动生成和实施研究想法。该框架分为研究想法生成、实验实施和实施执行三个阶段,通过自动化流程显著提升研究生产力。实验结果显示,MLR-Copilot能够生成高质量的假设和实验计划,并显著提高任务性能。然而,该系统仍需大量计算资源和人类监督。
32 4
|
1月前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
32 1