C++中explict声明构造函数的作用

简介: 在 C++ 中, 如果一个类有只有一个参数的构造函数,C++ 允许一种特殊的声明类变量的方式。在这种情况下,可以直接将一个对应于构造函数参数类型的数据直接赋值给类变量,编译器在编译时会自动进行类型转换,将对应于构造函数参数类型的数据转换为类的对象。
在 C++ 中, 如果一个类有只有一个参数的构造函数,C++ 允许一种特殊的声明类变量的方式。在这种情况下,可以直接将一个对应于构造函数参数类型的数据直接赋值给类变量,编译器在编译时会自动进行类型转换,将对应于构造函数参数类型的数据转换为类的对象。 如果在构造函数前加上 explicit 修饰词, 则会禁止这种自动转换,在这种情况下, 即使将对应于构造函数参数类型的数据直接赋值给类变量,编译器也会报错。

下面以具体实例来说明。

建立people.cpp 文件,然后输入下列内容:

/*人类,是人的类,不是人类 -:) */

class People
{
public:

int age;

explicit People (int a)
{
age=a;
}
};

/*三种方式来 “造人” */

void foo ( void )
{
People p1(10); //方式一

People* p_p2=new People(10); //方式二

People p3=10; //方式三
}

这段 C++ 程序定义了一个类 people ,包含一个构造函数, 这个构造函数只包含一个整形参数 a ,可用于在构造类时初始化 age 变量。

然后定义了一个函数foo,在这个函数中我们用三种方式分别创建了三个10岁的“人”。 第一种是最一般的类变量声明方式。第二种方式其实是声明了一个people类的指针变量,然后在堆中动态创建了一个people实例,并把这个实例的地址赋值给了p_p2。第三种方式就是我们所说的特殊方式,为什么说特殊呢? 我们都知道,C/C++是一种强类型语言,不同的数据类型是不能随意转换的,如果要进行类型转换,必须进行显式强制类型转换,而这里,没有进行任何显式的转换,直接将一个整型数据赋值给了类变量p3。 

因此,可以说,这里进行了一次隐式类型转换,编译器自动将对应于构造函数参数类型的数据转换为了该类的对象,因此方式三经编译器自动转换后和方式一最终的实现方式是一样的。

不相信? 耳听为虚,眼见为实,让我们看看底层的实现方式。

为了更容易比较方式一和方式三的实现方式,我们对上面的代码作一点修改,去除方式二:

void foo ( void )
{
People p1(10); //方式一

People p3=10; //方式三
}

去除方式二的原因是方式二是在堆上动态创建类实例,因此会有一些额外代码影响分析。修改完成后,用下列命令编译 people.cpp

$ gcc -S people.cpp

"-S"选项是GCC输出汇编代码。命令执行后,默认生成people.s。 关键部分内容如下:

.globl _Z3foov
.type _Z3foov, @function
_Z3foov:
.LFB5:
pushl %ebp
.LCFI2:
movl %esp, %ebp
.LCFI3:
subl $24, %esp
.LCFI4:
movl $10, 4(%esp)
leal -4(%ebp), %eax
movl %eax, (%esp)
call _ZN6PeopleC1Ei
movl $10, 4(%esp)
leal -8(%ebp), %eax
movl %eax, (%esp)
call _ZN6PeopleC1Ei
leave
ret

看“.LCFI4” 行后面的东西,1-4行和5-8行几乎一模一样,1-4行即为方式一的汇编代码,5-8即为方式三的汇编代码。 细心的你可能发现2和6行有所不同,一个是 -4(%ebp) 而另一个一个是 -8(%ebp) ,这分别为类变量P1和P3的地址。

对于不可随意进行类型转换的强类型语言C/C++来说, 这可以说是C++的一个特性。哦,今天好像不是要说C++的特性,而是要知道explicit关键字的作用?

explicit关键字到底是什么作用呢? 它的作用就是禁止这个特性。如文章一开始而言,凡是用explicit关键字修饰的构造函数,编译时就不会进行自动转换,而会报错。

让我们看看吧! 修改代码:

class People
{
public:

int age;

explicit People (int a)
{
age=a;
}
};

然后再编译:

$ gcc -S people.cpp

编译器立马报错:

people.cpp: In function ‘void foo()’:
people.cpp:23: 错误:请求从 ‘int’ 转换到非标量类型 ‘People’
目录
相关文章
|
2月前
|
编译器 C++
C++ 类构造函数初始化列表
构造函数初始化列表以一个冒号开始,接着是以逗号分隔的数据成员列表,每个数据成员后面跟一个放在括号中的初始化式。
72 30
|
1月前
|
编译器 C语言 C++
C++入门4——类与对象3-1(构造函数的类型转换和友元详解)
C++入门4——类与对象3-1(构造函数的类型转换和友元详解)
18 1
|
1月前
|
C++
C++构造函数初始化类对象
C++构造函数初始化类对象
15 0
|
1月前
|
C++
C++入门4——类与对象3-2(构造函数的类型转换和友元详解)
C++入门4——类与对象3-2(构造函数的类型转换和友元详解)
20 0
|
3月前
|
编译器 C++
C++的基类和派生类构造函数
基类的成员函数可以被继承,可以通过派生类的对象访问,但这仅仅指的是普通的成员函数,类的构造函数不能被继承。构造函数不能被继承是有道理的,因为即使继承了,它的名字和派生类的名字也不一样,不能成为派生类的构造函数,当然更不能成为普通的成员函数。 在设计派生类时,对继承过来的成员变量的初始化工作也要由派生类的构造函数完成,但是大部分基类都有 private 属性的成员变量,它们在派生类中无法访问,更不能使用派生类的构造函数来初始化。 这种矛盾在C++继承中是普遍存在的,解决这个问题的思路是:在派生类的构造函数中调用基类的构造函数。 下面的例子展示了如何在派生类的构造函数中调用基类的构造函数:
|
5月前
|
安全 编译器 C++
C++一分钟之-构造函数与析构函数
【6月更文挑战第20天】C++中的构造函数初始化对象,析构函数负责资源清理。构造函数有默认、参数化和拷贝形式,需注意异常安全和成员初始化。析构确保资源释放,避免内存泄漏,要防止重复析构。示例代码展示了不同构造函数和析构函数的调用情况。掌握构造和析构是有效管理对象生命周期和资源的关键。
46 2
|
6月前
|
C++ Linux
|
4月前
|
编译器 C++
【C++】详解构造函数
【C++】详解构造函数
|
5月前
|
存储 编译器 C++
【C++】类和对象④(再谈构造函数:初始化列表,隐式类型转换,缺省值
C++中的隐式类型转换在变量赋值和函数调用中常见,如`double`转`int`。取引用时,须用`const`以防修改临时变量,如`const int& b = a;`。类可以有隐式单参构造,使`A aa2 = 1;`合法,但`explicit`关键字可阻止这种转换。C++11起,成员变量可设默认值,如`int _b1 = 1;`。博客探讨构造函数、初始化列表及编译器优化,关注更多C++特性。
|
5月前
|
存储 编译器 C语言
【C++】类和对象②(类的默认成员函数:构造函数 | 析构函数)
C++类的六大默认成员函数包括构造函数、析构函数、拷贝构造、赋值运算符、取地址重载及const取址。构造函数用于对象初始化,无返回值,名称与类名相同,可重载。若未定义,编译器提供默认无参构造。析构函数负责对象销毁,名字前加`~`,无参数无返回,自动调用以释放资源。一个类只有一个析构函数。两者确保对象生命周期中正确初始化和清理。