【Java入门提高篇】Day23 Java容器类详解(六)HashMap源码分析(中)

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介:   上一篇中对HashMap中的基本内容做了详细的介绍,解析了其中的get和put方法,想必大家对于HashMap也有了更好的认识,本篇将从了算法的角度,来分析HashMap中的那些函数。HashCode  先来说说HashMap中HashCode的算法,在上一篇里,我们看到了HashMap中的...

  上一篇中对HashMap中的基本内容做了详细的介绍,解析了其中的get和put方法,想必大家对于HashMap也有了更好的认识,本篇将从了算法的角度,来分析HashMap中的那些函数。

HashCode

  先来说说HashMap中HashCode的算法,在上一篇里,我们看到了HashMap中的put方法是这样的:

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

  那这个hash函数又是什么呢?让我们来看看它的真面目:

    /**
     * 将高位与低位进行与运算来计算哈希值。因为在hashmap中使用2的整数幂来作为掩码,所以只在当前掩码之上的位上发生
     * 变化的散列总是会发生冲突。(在已知的例子中,Float键的集合在小表中保持连续的整数)因此,我们应用一个位运算
     * 来向下转移高位的影响。 这是在综合考虑了运算速度,效用和质量之后的权衡。因为许多常见的散列集合已经合理分布
     * (所以不能从扩散中受益),并且因为我们使用树来处理bin中发生的大量碰撞的情况,所以我们尽可能以代价最低的方式
     * 对一些位移进行异或运算以减少系统损失, 以及合并由于hashmap容量边界而不会被用于散列运算的最高位的影响。
     *
     * todo 扰动函数
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

  可以看出,这里并不是简单的使用了key的hashCode,而是将它的高16位与低16位做了一个异或操作。(“>>>”是无符号右移的意思,即右移的时候左边空出的部分用0填充)这是一个扰动函数,具体效果后面会说明。接下来再看看之前的putval方法:

 1     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 2                    boolean evict) {
 3         Node<K,V>[] tab; Node<K,V> p; int n, i;
 4         //如果当前table未初始化,则先重新调整大小至初始容量
 5         if ((tab = table) == null || (n = tab.length) == 0)
 6             n = (tab = resize()).length;
 7         //(n-1)& hash 这个地方即根据hash求序号,想了解更多散列相关内容可以查看下一篇
 8         if ((p = tab[i = (n - 1) & hash]) == null)
 9             //不存在,则新建节点
10             tab[i] = newNode(hash, key, value, null);
11         else {
12             Node<K,V> e; K k;
13             //先找到对应的node
14             if (p.hash == hash &&
15                     ((k = p.key) == key || (key != null && key.equals(k))))
16                 e = p;
17             else if (p instanceof TreeNode)
18                 //如果是树节点,则调用相应的putVal方法,这部分放在第三篇内容里
19                 //todo putTreeVal
20                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
21             else {
22                 //如果是链表则之间遍历查找
23                 for (int binCount = 0; ; ++binCount) {
24                     if ((e = p.next) == null) {
25                         //如果没有找到则在该链表新建一个节点挂在最后
26                         p.next = newNode(hash, key, value, null);
27                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
28                             //如果链表长度达到树化的最大长度,则进行树化,该函数内容也放在第三篇
29                             //todo treeifyBin
30                             treeifyBin(tab, hash);
31                         break;
32                     }
33                     if (e.hash == hash &&
34                             ((k = e.key) == key || (key != null && key.equals(k))))
35                         break;
36                     p = e;
37                 }
38             }
39             //如果已存在该key的映射,则将值进行替换
40             if (e != null) { // existing mapping for key
41                 V oldValue = e.value;
42                 if (!onlyIfAbsent || oldValue == null)
43                     e.value = value;
44                 afterNodeAccess(e);
45                 return oldValue;
46             }
47         }
48         //修改次数加一
49         ++modCount;
50         if (++size > threshold)
51             resize();
52         afterNodeInsertion(evict);
53         return null;
54     }

  注意看第八行的代码:

  tab[i = (n - 1) & hash]

  (n - 1) & hash 即通过key的hash值来取对应的数组下标,并非是对table的size进行取余操作。

  那么,为什么要这样做呢?首先,扰动函数的目的就是为了扩大高位的影响,使得计算出来的数值包含了高 16 位和第 16 位的特性,让 hash 值更加深不可测来降低碰撞的概率。从hash方法的注释中,我们也可以找到答案,一般的散列,其实都是做取余处理,但是HashMap中的table大小是2的整数次幂,也就是说,肯定不是质数,那么在取余的时候,偶数的映射范围势必就要小了一半,这样效果显然就差很多,而且,除法和取余其实是很慢的操作,所以在JDK8中,使用了一种很巧妙的方式来进行散列。首先,table的大小size设置成了2的整数次幂,这样使用size-1就变成了掩码,下面是我找的一张图,能很好的解释这个过程:

  n是table的大小,默认是16,二进制即为10000,n - 1 对应的二进制则为1111,这样再与hash值做“与”操作时,就变成了掩码,除了最后四位全部被置为0,而最后四位的范围肯定会落在(0~n-1)之间,正好是数组的大小范围,散列函数的妙处就在于此了。简直不能更稳,一波操作猛如虎。

  那么我们继续上一篇的栗子,我们来一步一步分析一下,小明和小李的hash值的映射过程:

  小明的hash值是756692,转换为二进制为10111000101111010100,table的大小是32,n-1=31,对应的二进制为:11111,做“与”运算之后,得到的结果是10100,即为20。

  小李的hash值是757012,转换为二进制为10111000110100010100,与11111做与运算后,得到的结果也是10100,即20,于是就与小明发生了冲突,但还是要先来后到,于是小李就挂在了小明后面。

  散列函数看完了,我们接下来再看看扩容函数。

扩容函数

  扩容函数其实之前也已经见过了,就在上面的putVal方法里,往上面翻一翻,第六行可以看到resize函数,这就是扩容函数,让我们来看看它的庐山真面目:

  

 1     /**
 2      * 初始化或将table的大小进行扩容。 如果table为null,则按照字段threshold中的初始容量目标进行分配。
 3      * 否则,因为我们使用2次幂进行扩容,所以在新表中,来自每个bin中的元素必须保持在相同的索引处,或者以原偏移量的2次幂进行移动。
 4      */
 5     final Node<K,V>[] resize() {
 6         Node<K,V>[] oldTab = table;
 7         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 8         int oldThr = threshold;
 9         int newCap, newThr = 0;
10         if (oldCap > 0) {
11             if (oldCap >= MAXIMUM_CAPACITY) {
12                 threshold = Integer.MAX_VALUE;
13                 return oldTab;
14             }
15             //新的容量扩展成原来的两倍
16             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
17                     oldCap >= DEFAULT_INITIAL_CAPACITY)
18                 //阈值也调整为原来的两倍
19                 newThr = oldThr << 1; // double threshold
20         }
21         else if (oldThr > 0) // initial capacity was placed in threshold
22             newCap = oldThr;
23         else {               // zero initial threshold signifies using defaults
24             newCap = DEFAULT_INITIAL_CAPACITY;
25             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
26         }
27         if (newThr == 0) {
28             float ft = (float)newCap * loadFactor;
29             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
30                     (int)ft : Integer.MAX_VALUE);
31         }
32         threshold = newThr;
33         @SuppressWarnings({"rawtypes","unchecked"})
34         Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
35         table = newTab;
36         //将旧数组中的node重新散列到新数组中
37         if (oldTab != null) {
38             for (int j = 0; j < oldCap; ++j) {
39                 Node<K,V> e;
40                 if ((e = oldTab[j]) != null) {
41                     oldTab[j] = null;
42                     if (e.next == null)
43                         newTab[e.hash & (newCap - 1)] = e;
44                     else if (e instanceof TreeNode)
45                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
46                     else { // preserve order
47                         Node<K,V> loHead = null, loTail = null;
48                         Node<K,V> hiHead = null, hiTail = null;
49                         Node<K,V> next;
50                         do {
51                             next = e.next;
52                             if ((e.hash & oldCap) == 0) {
53                                 if (loTail == null)
54                                     loHead = e;
55                                 else
56                                     loTail.next = e;
57                                 loTail = e;
58                             }
59                             else {
60                                 if (hiTail == null)
61                                     hiHead = e;
62                                 else
63                                     hiTail.next = e;
64                                 hiTail = e;
65                             }
66                         } while ((e = next) != null);
67                         if (loTail != null) {
68                             loTail.next = null;
69                             newTab[j] = loHead;
70                         }
71                         if (hiTail != null) {
72                             hiTail.next = null;
73                             newTab[j + oldCap] = hiHead;
74                         }
75                     }
76                 }
77             }
78         }
79         return newTab;
80     }

  这里可以看到,如果原来的table还未被初始化的话,调用该函数后就会被扩容到默认大小(16),上一篇中也已经说过,HashMap也是使用了懒加载的方式,在构造函数中并没有初始化table,而是在延迟到了第一次插入元素之后。

  当使用put插入元素的时候,如果发现目前的bins占用程度已经超过了Load Factor所设置的比例,那么就会发生resize,简单来说就是把原来的容量和阈值都调整为原来的2倍,之后重新计算index,把节点再放到新的bin中。因为index值的计算与table数组的大小有关,所以扩容后,元素的位置有可能会调整:

  以上图为例,如果对应的hash值第五位是0,那么做与操作后,得到的序号不会变,那么它的位置就不会改变,相反,如果是1,那么它的新序号就会变成原来的序号+16,。

  

  好像也不是很多嘛,嗯,算法部分就先介绍到这里了,之后的一篇再来说说HashMap中的EntrySet,KeySet和values(如果时间够的话顺便把迭代器也说一说)。

  好了,本篇就此愉快的结束了,最后祝大家端午节快乐!如果觉得内容还不错的话记得动动小手点关注哦,你的支持就是我最大的动力!

 

真正重要的东西,用眼睛是看不见的。
相关文章
|
20天前
|
算法 Java 开发者
Java 编程入门:从零到一的旅程
本文将带领读者开启Java编程之旅,从最基础的语法入手,逐步深入到面向对象的核心概念。通过实例代码演示,我们将一起探索如何定义类和对象、实现继承与多态,并解决常见的编程挑战。无论你是编程新手还是希望巩固基础的开发者,这篇文章都将为你提供有价值的指导和灵感。
|
9天前
|
Java 程序员
Java中的异常处理:从入门到精通
在Java编程的世界中,异常处理是保持程序稳定性和可靠性的关键。本文将通过一个独特的视角—把异常处理比作一场“捉迷藏”游戏—来探讨如何在Java中有效管理异常。我们将一起学习如何识别、捕捉以及处理可能出现的异常,确保你的程序即使在面对不可预见的错误时也能优雅地运行。准备好了吗?让我们开始这场寻找并解决Java异常的冒险吧!
|
20天前
|
Java 程序员 UED
Java 中的异常处理:从入门到精通
【8月更文挑战第31天】在Java编程的世界中,异常处理是保持应用稳定性的重要机制。本文将引导你理解异常的本质,学会如何使用try-catch语句来捕获和处理异常,并探索自定义异常类的魅力。我们将一起深入异常的世界,让你的代码更加健壮和用户友好。
|
20天前
|
Java 数据库连接 开发者
Java中的异常处理:从入门到精通
【8月更文挑战第31天】 在编程世界中,错误和异常就像是不请自来的客人,总是在不经意间打扰我们的程序运行。Java语言通过其异常处理机制,为开发者提供了一套优雅的“待客之道”。本文将带你走进Java异常处理的世界,从基础语法到高级技巧,再到最佳实践,让你的程序在面对意外时,也能从容不迫,优雅应对。
|
20天前
|
Java 开发者
Java 中的异常处理:从入门到精通
【8月更文挑战第31天】在Java的世界中,异常处理是保持程序健壮性的基石。本文将带你探索Java异常处理的奥秘,从基本的try-catch语句到深入理解自定义异常和最佳实践。你将学会如何优雅地处理错误,确保你的代码不仅能够面对意外情况,还能从中恢复。让我们一起开启这段旅程,掌握让程序更加稳定和可靠的技巧吧!
|
Java 容器 开发工具
Java容器类详解
Java的容器 在Java中,我们想要保存对象可以使用很多种手段。最简单的就是数组。但是数组具有固定的尺寸,而通常来说,程序总是在运行时根据条件来创建对象,我们无法预知将要创建对象的个数以及类型,所以Java推出了容器类来解决这一问题。
1107 0
|
6天前
|
存储 缓存 安全
【Java面试题汇总】多线程、JUC、锁篇(2023版)
线程和进程的区别、CAS的ABA问题、AQS、哪些地方使用了CAS、怎么保证线程安全、线程同步方式、synchronized的用法及原理、Lock、volatile、线程的六个状态、ThreadLocal、线程通信方式、创建方式、两种创建线程池的方法、线程池设置合适的线程数、线程安全的集合?ConcurrentHashMap、JUC
【Java面试题汇总】多线程、JUC、锁篇(2023版)
|
17天前
|
监控 Java 调度
【Java学习】多线程&JUC万字超详解
本文详细介绍了多线程的概念和三种实现方式,还有一些常见的成员方法,CPU的调动方式,多线程的生命周期,还有线程安全问题,锁和死锁的概念,以及等待唤醒机制,阻塞队列,多线程的六种状态,线程池等
79 6
【Java学习】多线程&JUC万字超详解
|
3天前
|
Java
深入理解Java中的多线程编程
本文将探讨Java多线程编程的核心概念和技术,包括线程的创建与管理、同步机制以及并发工具类的应用。我们将通过实例分析,帮助读者更好地理解和应用Java多线程编程,提高程序的性能和响应能力。
15 4
|
11天前
|
Java 调度 开发者
Java并发编程:深入理解线程池
在Java的世界中,线程池是提升应用性能、实现高效并发处理的关键工具。本文将深入浅出地介绍线程池的核心概念、工作原理以及如何在实际应用中有效利用线程池来优化资源管理和任务调度。通过本文的学习,读者能够掌握线程池的基本使用技巧,并理解其背后的设计哲学。