Java FileInputStream FileOutputStream类源码解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

FileInputStream和FileOutputStream是匹配的文件输出输出流,读取和写入的是byte,所以适合用来处理一些非字符的数据,比如图片数据。因为涉及到大量关于文件的操作,所以存在很多的native方法和利用操作系统的文件系统实现,所以要深入了解文件输入输出流还是需要加强操作系统和native源码的知识。先来看一下简单的使用示例:

    public static void main(String args[]) throws IOException{
        FileOutputStream out = new FileOutputStream("D:/test/file.txt");
        out.write("1234567890".getBytes());//1234567890
        out.close();
        out = new FileOutputStream("D:/test/file.txt");
        out.write("765".getBytes());//765
        out.close();
        out = new FileOutputStream("D:/test/file.txt", true);
        out.write("asdfgh".getBytes());//765asdfgh
        out.close();
        new File("D:/test/file.txt");//765asdfgh
        out = new FileOutputStream("D:/test/file.txt");
        out.close();//内容为空
        
        //测试filechannel位置改变对stream的影响
        out = new FileOutputStream("D:/test/file.txt");
        out.write("1234567890".getBytes());//1234567890
        out.close();
        
        FileInputStream in = new FileInputStream("D:/test/file.txt");
        
        System.out.print(String.valueOf((byte)in.read() & 0xf));//1
        System.out.print(String.valueOf((byte)in.read() & 0xf));//2
        System.out.print(String.valueOf((byte)in.read() & 0xf));//3
        
        in.getChannel().position(5);
        System.out.print(String.valueOf((byte)in.read() & 0xf));//6
        in.getChannel().position(0);
        System.out.print(String.valueOf((byte)in.read() & 0xf));//1
        
        in.skip(-1);//向前跳一位
        System.out.print(String.valueOf((byte)in.read() & 0xf));//1
    }

FileInputStream

实现了抽象类InputStream,FileInputStream从文件系统中的文件获取bytes,文件是否有效取决于主机环境。FileInputStream对于直接从流中读取bytes数据非常有意义如图像数据。如果要读取字符信息,考虑使用FileReader。我们可以看到除了close以外,没有出现任何锁,但是实际上如果我们使用多个线程读取同一个文件时,单次读取是原子操作,见下方代码:

package test;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileThreadTest implements Runnable {
    private int type;// 0做skip操作,1做读取操作
    
    private int gap;

    private FileInputStream in;

    public FileThreadTest(int type, FileInputStream in, int gap) {
        this.type = type;
        this.in = in;
        this.gap = gap;
    }

    @Override
    public void run() {
        byte[] body = new byte[gap];
        if (this.type == 0) {
            try {
                for(int i = 0; i < 4; i++) {
                    in.skip(gap);
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        } else {
            try {
                for(int i = 0; i < 10; i++) {
                    in.read(body);
                    System.out.println(Thread.currentThread().getName() + "-" + new String(body));
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
            
        }
    }

    public static void main(String args[]) throws IOException, InterruptedException {
        FileOutputStream out = new FileOutputStream("D:/test/file.txt");
        for (int i = 0; i < 1000; i++) {
            out.write("1234567890".getBytes());// 写入测试数据
        }
        out.close();
        FileInputStream in = new FileInputStream("D:/test/file.txt");
        FileThreadTest t1 = new FileThreadTest(0, in, 2);
        FileThreadTest t2 = new FileThreadTest(1, in, 4);
        FileThreadTest t3 = new FileThreadTest(1, in, 3);
        Thread thread1 = new Thread(t1,"线程1");
        Thread thread2 = new Thread(t2,"线程2");
        Thread thread3 = new Thread(t3,"线程3");
        thread2.start();
        thread3.start();
        thread1.start();
        thread1.join();
        thread2.join();
        thread3.join();
        in.close();
        /*
        线程3-567
        线程3-678
        线程2-1234
        线程3-901
        线程3-678
        线程2-2345
        线程2-2345
        线程2-6789
        线程2-0123
        线程2-4567
        线程2-8901
        线程2-2345
        线程2-6789
        线程3-901
        线程3-456
        线程3-789
        线程2-0123
        线程3-012
        线程3-345
        线程3-678
        */
    }
}

运行结果试机器配置每次运行会有所不同,但是我们可以看到无论怎么运行,每一次read操作本身是不会被其他线程抢占而中断的,它一定会完整的读取到这次要读取的内容,但是由于其他线程可以改变输入流的位置,所以每个线程读取时开始的位置是不可预知的,每个线程的read和skip操作都会改变流的位置。

先来看下内部变量,一个文件输出流有文件路径名、文件描述符、文件通道属性,若由文件描述符来创建,则文件路径名为null

    /* 文件描述符,用来打开文件*/
    private final FileDescriptor fd;

    /**
     * 引用文件的路径,如果流是通过文件描述符创建时该值为null
     */
    private final String path;

    private FileChannel channel = null;
    //用于保证close操作的线程安全性
    private final Object closeLock = new Object();
    private volatile boolean closed = false;

然后是构造函数,主要分为通过文件路径名、文件描述符、具体文件,通过文件描述符创建时文件路径名为null

    /**
     * 通过打开一个连接实际文件的连接来创建一个FileInputStream,文件通过文件系统中的路径名name来命名。
     * 一个新的文件描述符对象会被创建来表示这个文件连接
     * 如果存在安全管理器,checkRead方法会被调用,name作为参数传入
     * 如果文件名不存在,或者是一个目录而不是规则文件,或者因为其他原因无法打开读取,抛出FileNotFoundException
     */
    public FileInputStream(String name) throws FileNotFoundException {
        this(name != null ? new File(name) : null);
    }
    //通过具体文件来创建,其他情况同上
    public FileInputStream(File file) throws FileNotFoundException {
        String name = (file != null ? file.getPath() : null);//name是file的路径名
        SecurityManager security = System.getSecurityManager();
        if (security != null) {
            security.checkRead(name);//检查是否对文件有读取权限
        }
        if (name == null) {
            throw new NullPointerException();
        }
        if (file.isInvalid()) {
            throw new FileNotFoundException("Invalid file path");
        }
        fd = new FileDescriptor();
        fd.attach(this);//绑定文件描述符便于关闭对象
        path = name;
        open(name);//打开文件
    }

    /**
     * 通过文件描述符fdObj来创建FileInputStream,代表了对一个文件系统中实际存在文件的连接
     * 如果FileInputStream是null会抛出NullPointerException
     * 如果fdObj是无效的,构造器不会抛出异常,但是,如果调用这个流的IO方法,会抛出IOException
     */
    public FileInputStream(FileDescriptor fdObj) {
        SecurityManager security = System.getSecurityManager();
        if (fdObj == null) {
            throw new NullPointerException();
        }
        if (security != null) {
            security.checkRead(fdObj);
        }
        fd = fdObj;
        path = null;

        //文件描述符被流共享,将这个流注册到文件描述符的追踪器
        fd.attach(this);
    }

文件本身需要打开才能进行操作,open只能由构造函数来调用,最终是由native方法open0来完成的系统的交互

    private void open(String name) throws FileNotFoundException {
        open0(name);
    }

    private native void open0(String name) throws FileNotFoundException;

读取根据参数重载分为读取单个字节和读取字符数组,它们分别基于native方法read0和readBytes,前面的测试中,我们可以看到被多个线程共享的FileInputStream依然能够保证单次的read操作读取的信息是完整的,这应该与readBytes的实现有关

    //从流中读取byte,如果没有有输出没有完成会阻塞方法
    public int read() throws IOException {
        return read0();
    }
    //从流中读取最大b.length的bytes数据到数组b中。该方法会被阻塞知道某些输入完成
    public int read(byte b[]) throws IOException {
        return readBytes(b, 0, b.length);
    }
    //从流中读取长度为len的数据,放到b中从off开始的位置
    public int read(byte b[], int off, int len) throws IOException {
        return readBytes(b, off, len);
    }

    private native int read0() throws IOException;
    private native int readBytes(byte b[], int off, int len) throws IOException;

skip也是native方法跳过并废弃输入流中n个bytes数据,skip方法可能因为一些不同的原因以跳过更少的bytes数结束,可能这个数量是0.如果n是负数,方法会尝试往回跳(见本文最上方例子)。如果文件不支持从当前位置往回掉,会抛出IOException。返回的是实际跳过的bytes数量,为正是往后跳,为负是往前跳。可能会跳过比文件中剩余数量更多的bytes数,这个过程不会产生异常,跳过的bytes数可能包括了一些文件中超过了EOF文件结束符的bytes数,跳过了文件结束符再尝试读取会返回-1,说明已经到达文件末尾。

    public native long skip(long n) throws IOException;

available也是native方法,返回剩余可读取的或者可跳过的bytes数的估计值,这个过程不会阻塞下一个操作。文件超过EOF时返回0。下一个调用可能是相同的线程或不同的线程,一个读取或者跳过这么多bytes的操作不会被阻塞,但是可能读取或跳过更少的bytes。一些情况下,一个非阻塞的读取或者跳过可能在非常慢时被阻塞,比如从一个很慢的网络中读取大文件。

    public native int available() throws IOException;

close关闭文件输入流并释放相关联的任何系统资源,如果流关联通道则通道也要关闭。通过加锁保证只能进行一次,避免重复关闭。最终由文件描述符通过close0来关闭文件。

    public void close() throws IOException {
        synchronized (closeLock) {//只能由一个线程来执行关闭一次
            if (closed) {
                return;
            }
            closed = true;
        }
        if (channel != null) {
           channel.close();//关闭关联的通道
        }

        fd.closeAll(new Closeable() {//通知文件描述符关闭文件
            public void close() throws IOException {
               close0();
           }
        });
    }

    private native void close0() throws IOException;

getChannel返回关联的通道,初始化通道的位置是目前位置从文件中读取的bytes数量。从流中读取bytes会增加通道的位置,改变通道的位置会改变流中的文件位置。延迟初始化,第一次调用该方法才会打开文件通道。

    public FileChannel getChannel() {
        synchronized (this) {//初始化单例
            if (channel == null) {
                channel = FileChannelImpl.open(fd, path, true, false, this);
            }
            return channel;
        }
    }

finalize是protected方法必须通过继承FileInputStram的类来使用,作用是确保close在没有任何对流的引用时被调用,也就是避免其他线程中流还在读取,另一个线程发起了close,因为可以通过文件描述符来判断是否是in状态也就是正在读取。

    protected void finalize() throws IOException {
        if ((fd != null) &&  (fd != FileDescriptor.in)) {
            /* 
             * 如果fd被共享,FileDescriptor中的引用会确保终结方法只会在安全的时候调用。
             * 所有使用fd的引用都不可达时,我们调用close
             */
            close();
        }
    }

FileOutputStream

FileOutputStream是对应的文件输出流,文件输出流将数据也到一个文件或者是一个文件描述符中,无论文件是否有效或者可能根据所在平台创建一个新的文件。在一些平台上,一个文件只允许被一个FileOutputStream或者其他文件写入对象进行操作,在这种环境下,本类的构建在文件已经被打开时可能会出错。FileOutputStream写入的是比特,可以用于写入图片数据,如果要写入字符的话可以考虑使用FileWriter。

和上面的输入流很相似,FileOutputStream除了close以外也是不加锁的,但是write是一个原子性操作,必须在前一个byte串输出完之后,下一个输出才能开始。多线程可以强制输出流进行输出,但不能中断未进行完的write。

package test;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileOutputThreadTest implements Runnable {
    private byte[] txt;

    private FileOutputStream out;

    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            try {
                out.write(txt);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }

    public FileOutputThreadTest(String txt, FileOutputStream out) {
        this.txt = txt.getBytes();
        this.out = out;
    }

    public static void main(String args[]) throws InterruptedException, IOException {
        FileOutputStream out = new FileOutputStream("D:/test/file.txt");
        StringBuilder build = new StringBuilder();
        Thread[] t = new Thread[10];
        for (int i = 0; i < 10; i++) {
            build.setLength(0);
            for (int j = 0; j < 5; j++) {
                build.append(i);
            }
            t[i] = new Thread(new FileOutputThreadTest(build.toString(), out));
        }
        for (int i = 0; i < 10; i++) {
            t[i].start();
        }
        for (int i = 0; i < 10; i++) {
            t[i].join();
        }
        out.close();

        // 根据输出结果,每个字符应该连续出现5的倍数
        FileInputStream in = new FileInputStream("D:/test/file.txt");
        int pos = 0;
        while (in.available() > 0) {
            int text = in.read();
            pos++;
            for (int i = 1; i < 5; i++) {
                if (text != in.read()) {
                    System.out.println("error" + String.valueOf(pos));// 没有出现
                    return;
                }
                pos++;
            }
        }
        /*
         * 00000000000000000000000000000000000000000000000000
         * 22222222222222211111222222222222222222222222222222输入有交错
         * 22222111111111111111111111111111111111111111111111
         * 33333333333333333333333333333333333333333333333333
         * 55555555555555555555555555555555555555555555555555
         * 44444444444444444444444444444444444444444444444444
         * 66666666666666666666666666666666666666666666666666
         * 99999999999999999999999998888888888777777777777777
         * 77777777777777777777777777777777777999999999999999
         * 99999999998888888888888888888888888888888888888888
         */
    }

}

FileOutputStream有两种模式,清空文件从头开始输入和保留原本内容从文件末尾开始添加,这取决于内部属性append为true时是添加模式

    /**
     * 系统依赖的文件描述符
     */
    private final FileDescriptor fd;

    /**
     * 文件为扩展模式在末尾添加时为true
     */
    private final boolean append;

    /**
     * 相关联的文件通道,延迟初始化
     */
    private FileChannel channel;

    /**
     * 文件路径,如果该流是通过文件描述符来创建,为null
     */
    private final String path;

    private final Object closeLock = new Object();
    private volatile boolean closed = false;

构造方法传入的参数同样是三类:文件路径名、具体文件和文件描述符,append参数也在构造中指定,如果不输入默认是false

    /**
     * 通过具体的名字创建一个文件输出流来写入到文件。一个新的文件描述符被创建来代表这个文件.
     * 如果有一个安全管理器,它的checkWrite方法需要传入name参数
     * 如果文件存在但它是一个目录而不是规则的文件,或者文件不出在但不能被创建,或者文件因为其他原因不能被打开,抛出FileNotFoundException
     */
    public FileOutputStream(String name) throws FileNotFoundException {
        this(name != null ? new File(name) : null, false);//默认输出流从文件头部开始写入,会导致文本被清空
    }

    public FileOutputStream(String name, boolean append)
        throws FileNotFoundException
    {
        this(name != null ? new File(name) : null, append);
    }
    //创建一个文件输出流来向一个具体的file中写入数据。一个新的文件描述符被创建来代表这个文件连接。
    public FileOutputStream(File file) throws FileNotFoundException {
        this(file, false);//清空文件并且从头开始输入
    }
    
    public FileOutputStream(File file, boolean append)
        throws FileNotFoundException
    {
        String name = (file != null ? file.getPath() : null);//file的路径和文件名
        SecurityManager security = System.getSecurityManager();//获取操作系统的安全管理器
        if (security != null) {
            security.checkWrite(name);//检查对文件是否有写入权限
        }
        if (name == null) {
            throw new NullPointerException();
        }
        if (file.isInvalid()) {
            throw new FileNotFoundException("Invalid file path");
        }
        this.fd = new FileDescriptor();
        fd.attach(this);//便于文件描述符关闭文件
        this.append = append;
        this.path = name;

        open(name, append);
    }
    
    /**
     * 创建一个文件输入流写入到具体的文件描述符中,该文件描述符表示了对一个文件系统中实际文件存在的链接
     * 安全管理器的checkWrite参数是文件描述符fdObj
     * 如果fdObj是null会抛出NullPointerException
     * 如果fdObj不可用不会抛出异常,但是,如果此时尝试调用该流的IO方法会抛出IOException
     */
    public FileOutputStream(FileDescriptor fdObj) {
        SecurityManager security = System.getSecurityManager();
        if (fdObj == null) {
            throw new NullPointerException();
        }
        if (security != null) {
            security.checkWrite(fdObj);
        }
        this.fd = fdObj;
        this.append = false;//从头写入
        this.path = null;//使用文件描述符时没有路径

        fd.attach(this);
    }

同样,文件需要打开才能进行写入,open方法只能由构造函数调用,基于native方法open0完成

    private void open(String name, boolean append)
        throws FileNotFoundException {
        open0(name, append);//调用native方法打开文件
    }

    private native void open0(String name, boolean append)
        throws FileNotFoundException;

write操作上面提到过写入byte数组的操作是原子的,也就是native方法writeBytes是不可中断的。append变量作用在两个native方法中

    //将具体的byte写入到文件输出流中,实现了OutputStream.write方法
    public void write(int b) throws IOException {
        write(b, append);
    }

    public void write(byte b[]) throws IOException {
        writeBytes(b, 0, b.length, append);
    }

    public void write(byte b[], int off, int len) throws IOException {
        writeBytes(b, off, len, append);
    }

    private native void writeBytes(byte b[], int off, int len, boolean append)
        throws IOException;

    private native void write(int b, boolean append) throws IOException;

close关闭这个文件输出流并释放任何关联的系统资源,这个输出流不能再用于写入bytes,如果流关联到了通道,则通道也关闭。通过加锁保证只会被关闭一次。

    public void close() throws IOException {
        synchronized (closeLock) {//close只能进行一次所以需要是线程安全的,只能由一个线程进行
            if (closed) {
                return;
            }
            closed = true;
        }

        if (channel != null) {
            channel.close();//关闭文件通道
        }

        fd.closeAll(new Closeable() {
            public void close() throws IOException {
               close0();
           }
        });
    }

    private native void close0() throws IOException;

getChannel获取的文件通道,返回通道的初始化等于到目前为止写入文件的bytes数量,除非当前的流是扩展模式,该模式下等于文件的大小。写入bytes将会增加通道的位置,无论是通过写入或者指明来改变通道的位置都会改变流的文件位置。文件通道是延迟初始化的设计,在调用时才进行初始化。

    public FileChannel getChannel() {
        synchronized (this) {//确保只初始化一次
            if (channel == null) {
                channel = FileChannelImpl.open(fd, path, false, true, append, this);
            }
            return channel;
        }
    }

finalize和FIleInputStream一样也是要通过继承类来调用的protected方法,清除所有到文件的连接,确保当没有其他对这个流的引用时,close方法被调用。通过文件描述符的状态来判断当前是否在输出。

    protected void finalize() throws IOException {
        if (fd != null) {
            if (fd == FileDescriptor.out || fd == FileDescriptor.err) {
                flush();
            } else {
                /* 
                 * 如果fd被共享,FileDescriptor中的引用会确保终结器只在安全的时候被调用。
                 * 所有使用fd的引用都不可达时,我们调用close
                 */
                close();
            }
        }
    }
相关文章
|
16天前
|
数据采集 人工智能 Java
Java产科专科电子病历系统源码
产科专科电子病历系统,全结构化设计,实现产科专科电子病历与院内HIS、LIS、PACS信息系统、区域妇幼信息平台的三级互联互通,系统由门诊系统、住院系统、数据统计模块三部分组成,它管理了孕妇从怀孕开始到生产结束42天一系列医院保健服务信息。
28 4
|
23天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
60 2
|
8天前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
14天前
|
数据采集 存储 Web App开发
Java爬虫:深入解析商品详情的利器
在数字化时代,信息处理能力成为企业竞争的关键。本文探讨如何利用Java编写高效、准确的商品详情爬虫,涵盖爬虫技术概述、Java爬虫优势、开发步骤、法律法规遵守及数据处理分析等内容,助力电商领域市场趋势把握与决策支持。
|
18天前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
24天前
|
存储 算法 Java
Java Set深度解析:为何它能成为“无重复”的代名词?
Java的集合框架中,Set接口以其“无重复”特性著称。本文解析了Set的实现原理,包括HashSet和TreeSet的不同数据结构和算法,以及如何通过示例代码实现最佳实践。选择合适的Set实现类和正确实现自定义对象的hashCode()和equals()方法是关键。
26 4
|
23天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
安全 Java
Java并发编程笔记之CopyOnWriteArrayList源码分析
并发包中并发List只有CopyOnWriteArrayList这一个,CopyOnWriteArrayList是一个线程安全的ArrayList,对其进行修改操作和元素迭代操作都是在底层创建一个拷贝数组(快照)上进行的,也就是写时拷贝策略。
19551 0
|
Java 安全
Java并发编程笔记之读写锁 ReentrantReadWriteLock 源码分析
我们知道在解决线程安全问题上使用 ReentrantLock 就可以,但是 ReentrantLock 是独占锁,同时只有一个线程可以获取该锁,而实际情况下会有写少读多的场景,显然 ReentrantLock 满足不了需求,所以 ReentrantReadWriteLock 应运而生,ReentrantReadWriteLock 采用读写分离,多个线程可以同时获取读锁。
3137 0
|
Java
Java并发编程笔记之FutureTask源码分析
FutureTask可用于异步获取执行结果或取消执行任务的场景。通过传入Runnable或者Callable的任务给FutureTask,直接调用其run方法或者放入线程池执行,之后可以在外部通过FutureTask的get方法异步获取执行结果,因此,FutureTask非常适合用于耗时的计算,主线程可以在完成自己的任务后,再去获取结果。
4296 0

推荐镜像

更多