11g包dbms_parallel_execute在海量数据处理过程中的应用

简介:

查看环境版本
select * from v$version;
1 Oracle Database 12c Enterprise Edition Release 12.2.0.1.0 - 64bit Production 0
2 PL/SQL Release 12.2.0.1.0 - Production 0
3 "CORE 12.2.0.1.0 Production" 0
4 TNS for 64-bit Windows: Version 12.2.0.1.0 - Production 0
5 NLSRTL Version 12.2.0.1.0 - Production 0
第一步:

Oracle生成100万条测试数据的方法

Oracle生成一百万测试数据的方法如下:

方法一:创建一个表,并同时添加1000000条数据,代码:

create table TestTable as
select rownum as id,

           to_char(sysdate + rownum/24/3600, 'yyyy-mm-dd hh24:mi:ss') as inc_datetime,
           trunc(dbms_random.value(0, 100)) as random_id,
           dbms_random.string('x', 20) random_string
      from dual
    connect by level <= 1000000;
    

方法二:在创建表后,原来表的基础上追加记录,比如在方法一创建的TestTable表中追加1000000条数据,代码:

insert into TestTable
(ID, INC_DATETIME,RANDOM_ID,RANDOM_STRING)
select rownum as id,

     to_char(sysdate + rownum / 24 / 3600, 'yyyy-mm-dd hh24:mi:ss') as inc_datetime,
     trunc(dbms_random.value(0, 100)) as random_id,
     dbms_random.string('x', 20) random_string
from dual

connect by level <= 1000000;

上面SQL是利用了Oracle数据库语法的几个实用小技巧实现的:
1、利用Oracle特有的“connect by”树形连接语法生成测试记录,“level <= 10”表示要生成10记录;
2、利用rownum虚拟列生成递增的整数数据;
3、利用sysdate函数加一些简单运算来生成日期数据,本例中是每条记录的时间加1秒;
4、利用dbms_random.value函数生成随机的数值型数据,本例中是生成0到100之间的随机整数;
5、利用dbms_random.string函数生成随机的字符型数据,本例中是生成长度为20的随机字符串,字符串中可以包括字符或数字。

第二步:

Oracle11.2新特性之使用DBMS_PARALLEL_EXECUTE包实现并行
使用DBMS_PARALLEL_EXECUTE包实现并行
比如现在有一个表 t 有1000万行,如果想以这个表为基础,把数据选择性的插入另外一个表t2,
使用Insert into TestTable_tmpd select *from TestTable_tmp;
使用并行来处理也没有问题,但是如果使用dbms_parallel_execute也是一种很不错的选择。
使用dbms_parallel_execute的实现方式和parallel还有一定的差别。
这个包在11g开始引入,可能初次接触的时候会被它大量的功能所淹没,不知道从何开始。
该包支持insert、update、delete、merge、匿名包自动以scheduler job 方式并行执行。
支持的chunk方式包括:
CREATE_CHUNKS_BY_NUMBER_COL Procedure
CREATE_CHUNKS_BY_ROWID Procedure
CREATE_CHUNKS_BY_SQL Procedure

create table TestTable_tmpd as select * from TestTable_tmp where 1=2;
select * from TestTable_tmpd;

使用如下的存储过程来模拟一个dml的处理过程。传入的参数,是根据rowid来处理。
create or replace procedure serial(p_lo_rid in rowid,p_hi_rid in rowid)
is
begin
for x in (select id,inc_datetime,random_id,random_string from TestTable_tmp where rowid between p_lo_rid and p_hi_rid)
loop
insert into TestTable_tmpd(id,inc_datetime,random_id,random_string)
values(x.id,x.inc_datetime,x.random_id,x.random_string);
end loop;
end;
使用dbms_parallel_execute来创建一个Job,以1万条数据分单位进行数据的rowid切分。

begin
dbms_parallel_execute.create_task('PROCESS TASK');
dbms_parallel_execute.create_chunks_by_rowid
( task_name=>'PROCESS TASK',
table_owner=>'C##TEST',
table_name=>'TESTTABLE_TMP',
by_row=>false,
chunk_size=>100000);
end;

通过dba_parallel_execute_chunks可以查看到切分后的rowid情况。

set pages 200
select *from (
select chunk_id,status,start_rowid,end_rowid
from dba_parallel_execute_chunks
where task_name='PROCESS TASK'
order by chunk_id
);

查看切分后的情况,我们可以把切分后的每一个子块称为chunk。可以通过这个语句来简单的监控进度。

1 8 UNASSIGNED AAASQ4AAMAAAR4wAAA AAASQ4AAMAAAT5/H//

可以使用如下的部分来开始处理数据。启用了4个并行,并行度可以情况来提高。:start_id,:end_id是上面对应的rowid.

可以使用如下的部分来开始处理数据。启用了4个并行,并行度可以情况来提高。:start_id,:end_id是上面对应的rowid.

begin
dbms_parallel_execute.run_task
(task_name=>'PROCESS TASK',
sql_stmt=>'begin serial(:start_id,:end_id); end;',
language_flag=>DBMS_SQL.NATIVE,
parallel_level=>4);
end;
/
处理完数据之后,就可以删除这个job了。

begin
dbms_parallel_execute.drop_task('PROCESS TASK');
end;

在数据处理的时候。可以看到dbms_parallel_execute后台启用的处理进程和并行还是有一些不同的。
启用了4个并行之后,看到都是j00这样的进程

相关文章
|
3月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
105 0
|
3月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
117 0
|
8月前
|
SQL 分布式计算 大数据
利用SparkSQL Logical Plan Parse 打造大数据平台SQL诊断利器
利用SparkSQL Logical Plan Parse 打造大数据平台SQL诊断利器
117 0
|
SQL 存储 JSON
使用实践:Fixed Plan加速SQL执行
本文将会介绍在Hologres中如何通过fixed plan加速SQL运行
11732 0
使用实践:Fixed Plan加速SQL执行
|
SQL 分布式计算 Spark
SPARK SQL中 Grouping sets转Expand怎么实现的(逻辑计划级别)
SPARK SQL中 Grouping sets转Expand怎么实现的(逻辑计划级别)
562 0
|
SQL 分布式计算 Spark
Adaptive Execution如何让Spark SQL更高效更好用?
本文转发自技术世界,原文链接 http://www.jasongj.com/spark/adaptive_execution/ 1 背  景 Spark SQL / Catalyst 和 CBO 的优化,从查询本身与目标数据的特点的角度尽可能保证了最终生成的执行计划的高效性。