京信通信:数据智能为生产调试“增效瘦身”

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: “数据驱动测试优化,突破自动测试边界,赋能智慧测试新模式。”——京信智能制造副总经理葛鑫 “进入车间,映入眼帘的是一条长约20 米的 O 型生产线,产线前三名工人和几个机器人正协同工作,将各种元器件的印刷线路板(PCBA 板)与产品壳体组装起来。

“数据驱动测试优化,突破自动测试边界,赋能智慧测试新模式。”——京信智能制造副总经理葛鑫

image

“进入车间,映入眼帘的是一条长约20 米的 O 型生产线,产线前三名工人和几个机器人正协同工作,将各种元器件的印刷线路板(PCBA 板)与产品壳体组装起来。这条生产线覆盖了产品的装配和测试工序,可支持 12 款主流产品的实时混线生产。产品在线上被自动扫码识别,车间的管理系统会直接根据产品的型号实时向机器人下发指令,产品完成装配, AGV无人车忙碌的搬运着各种物料…”

眼前的景象是京信通信位于广州的一家工厂, 成立于1997年的京信通信是全球领先的无线通信与信息解决方案和服务提供商, 2003年于香港联交所主板上市,公司为全球80多个国家和地区提供移动网络及行业应用整体解决方案。

一.智能制造升级之路

京信通信集团副总裁陈遂阳先生表示,20年一路走来,京信通信发展并非一番风顺 - 行业竞争激烈,企业议价能力弱;产品更新换代快,小批量、多品种产品需求需要更强的柔性生产能力;招工难,劳动力成本与原材料成本不断攀升…

面对外部市场环境挑战,早在2006年,京信通信就开始积极布局工厂的自动化与信息化改造,并在新技术引入上做了大胆的尝试,以实现工厂的降本增效。自动化端,京信通信从关键岗位的自动化升级,到产线的自动化与柔性化改造,再到人、机、料、法、环 (环境)的互联互通、以及智能物流、数字仿真与模块化设计上的投入,如今的工厂已经具备了良好的混线生产能力。同时,信息化端,企业在2006年就开始花大力气部署ERP、PLM、RDM、OA等应用。2013年,信息化重点升级到系统间集成,并同时补足了生产执行、订单管理、仓储管理等系统。

然而,2017年之前,京信通信自动化与信息化建设像火车的双轨,虽然离得很近,实则并没有产生交集。陈总意识到,IT/OT集成是实现生产智能化、网络化与数字化绕不过的坎。于是,2017年,公司果断开发了SCADA系统,实现了生产设备互联,同时工厂端部署了大量传感器,以此作为连通数字与物理环境的桥梁。设备数据首次可以在各业务间流转,帮助优化企业销售、计划、采购、排产等决策。 得益于自动化、信息化建设以及新技术的部署,2013年到2017年间,生产工人数量减少了50%, 产能增加了10%。

image

二.工业大脑之旅起航

利用工业大数据优化产线并不是突发奇想, 早在京信通信启动智能制造项目以来,大数据就被列为项目规划的重要组成部分。过去十年来,企业在自动化、信息化以及IT/OT融合上持续投入为工业大数据/工业智能的能力施展做了很好的铺垫 - 设备数字化与网联化,以及与MES、ERP等工业系统的互联互通为工业大脑的实施打下了足够扎实的数据基础。

哪里最痛,就从哪里入手

工业大数据的场景聚焦是很多制造企业最为头疼的地方,而京信通信却没有这方面的担忧。在与阿里云的合作过程中,阿里云大数据专家邓超对京信的评价是“最清晰地知道生产数据如何使用的企业”。公司早期就明确了工业大数据的方向与定位,即利用大数据提升生产过程中调试环节效率。产品调试是通信生产过程中最为重要的环节。调试环节的成本占总生产成本比重高达30-40%, 且耗时耗力。单以某多模产品为例,调试与测试项目多达300项,且很多指标之间存在相互关联,调试与测试周期长,单个产品平均耗时超过1个小时,严重影响产品生产进度。

image

京信智能制造副总经理葛鑫表示:“在生产测试环节,企业已经触碰到天花板,能想的办法都想了。这个时候我们就在设想,能不能再从数据中深挖一些价值”。于是,去年11月份,京信通信智能制造团队与阿里云工业大数据专家接触,并定下了目标 - 以阿里云的云计算能力和“Dataworks”大数据计算平台为基础,通过数据上云以及工业大脑的部署,在云端汇总打通生产关键环节的数据,以测试/检测数据为主体,利用算法模型进行制程能力的综合分析与评估优化,提升测试效率。当明确了工业大脑的突破场景与目标,京信通信很快就成立了工业大脑项目团队,智能制造部为牵头部门,产品事业部、 IT部、生产部门与阿里云大数据专家团队作为核心成员。 项目分为四个步骤:

1. 多维数据收集 – 大脑团队从一款信号拉远设备数据采集入手。该产品需要的调试、测试项目分别都有80个左右,而每个项目都有9个数据维度。通过京信通信自研的数据采集系统进行产品的多维度数据采集,最终收集上来的调试测试数据维度多达1500个。

2. 全链路打通 - 数据上传到MaxCompute大数据平台,通过将调试测试数据在产品-模块-通道-调试/测试项目多个层级的数据关联,形成每一个产品在生产过程中调试工序和测试工序全链路的数据打通。

3. 寻优算法 – 基于机器学习平台PAI,利用大数据人工智能算法,对调测关系做数据挖掘。通过对历史已生产产品样本进行决策分类,针对测试项目分成不同目标水平的样本,根据调试项目内容聚类,计算每种类别的CPK(生产制成能力)水平,由此沉淀基于调测关系的检测规则。

4. 实时检测优化-基于上一阶段沉淀的检测规则,构建实时产品检测策略优化模型。对产线上已调试的产品(待测产品),基于调测关系的检测规则,推荐抽检频率,选择合适的抽检策略。举个例子,比如当增益定标(信号放大指标)的调试值大于-0.25, CPK处于较高水平,系统会自动提高产品检测的抽免检比例,而如果值小于-0.25, 则需要进行全检。

基于参数优化的模拟结果超过预期,检测指标项从平均300个点位降到200个,调试子项目的耗时减少超过35%,产品整体调试效率优化10-20%。

车间的技术人员可从阿里云平台随时调用算法API,动态优化调试、测试过程。

image

三.新起点、新征程

工业大脑的能力在成品检测环节得到了印证, 极大增强了公司管理层的信心,于是开始着手工业大脑下一阶段布局。

阶段一 全生产链测试优化

目前工业大脑的应用还仅是在整机的测试环节,京信通信希望能够将测试的控制点前移,提前到前端各组件环节,包括器件、PCBA、模块等,由此减少产品返修,大幅提高最终整机通过率。此外,通过对调试与测试过程参数的分析,优化BOM成本,为研发设计提供指导。

阶段二 行业测试云平台

无线通讯行业中小企业众多,测试仪表设备贵重, 需要优化仪表的利用效率,同时通信产品的测试认证复杂,很多企业没有能力搭建自动化测试系统。京信通信希望能够打造行业测试云平台,通过提供AI SaaS与APP应用,满足广大中小企业生产过程中的自动化、智能化测试需求。

image

四.工业大脑的三点启示

首先,离散制造业加工任务的分散并不意味着工业大数据价值的发挥会大打折扣,而关键在于对数据的理解以及场景的深挖。外部数据专家的引入有助企业跳出传统思维框架,站在新的视角,唤醒数据潜能;

其次,京信通信工业大脑项目的成功绝非偶然。如果把工业大脑比做剑宗,灵动,见效快,那么IT/OT融合则是气宗,需要扎实的基本功。工厂多年在IT与OT上的投入以及数据的积累为大脑的发挥上打下了扎实的基础,而工业大脑的应用则有助发现IT/OT融合上的盲点,倒逼工厂的信息化与自动化升级。

最后,天下武功,唯快不破。工业大脑的实施无需一口吃成个胖子,可以单点突破,从生产环境中的某个痛点下手,关键是要加快试错与迭代的节奏,随后快速复制,扩展到其他生产场景,最终形成工厂的全局智能。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
7月前
|
存储 监控 安全
智慧工地平台,工程全生命周期管理,实现对人、机、料、法、环的全方位实时监控
智慧工地运行的系统包括工程质量管理系统、劳务人员实名制系统、项目人员管理系统、智能监控系统、绿色施工系统、危大工程管理系统、物料管理系统、智能水电监测系统、安全隐患排查系统、互联网远程会议系统等。智能工地能够有效提高建筑施工质量,这些系统的运行能够使我们的建筑行业更加高效和安全。
191 0
|
5月前
|
小程序 前端开发 物联网
无人桌球室小程序平台系统定制开发方案
【项目摘要】随着社会进步和科技发展,无人桌球室小程序应运而生,解决传统桌球室管理难题。提供在线预订、自动计分、赛事查询及会员管理功能,采用微信小程序前端、微服务后端及物联网智能设备技术实现。市场推广结合社交媒体、线下活动及口碑营销。需开发支持,请联系小编。
|
7月前
|
传感器 监控 数据可视化
万界星空MES安灯管理:优化生产监控的重要工具
MES安灯管理是一种基于物理安灯和数字化管理的生产异常管理工具。它通过物理安灯和数字化系统的结合,实现对生产异常的实时监控和及时反馈,从而帮助企业快速响应和解决生产异常,提高生产效率和产品质量。
203 0
万界星空MES安灯管理:优化生产监控的重要工具
|
存储 消息中间件 编解码
|
机器学习/深度学习 存储 人工智能
|
机器学习/深度学习 传感器 编解码
设备指纹:掌握联网设备全貌,为风控决策、模型建设提供重要支撑
作为了业务体系的基础组件之一,设备指纹广泛应用在标记、追踪、临时凭证、分析、反欺诈等不用服务场景下,是业务安全体系的重要组成部分。
631 0
设备指纹:掌握联网设备全貌,为风控决策、模型建设提供重要支撑
|
人工智能 前端开发 算法
高德地图数据生产自动化技术的路线与实践
高德技术开放日已经顺利落幕,我们准备了精彩的视频回放。这次放出的是由高德地图数据业务中心 王登 为大家带来的《高德地图数据生产自动化技术的路线与实践》。
402 0
高德地图数据生产自动化技术的路线与实践
|
数据可视化 BI
【一键启用】生产跟踪|解决制造企业生产管理难题
生产跟踪是一款适用于离散型生产制造企业实现智能生产管理的模板。针对性解决生产进度无从知晓、任务分工不透明、生产过程管控效率低、各类生产报表统计费时费力等痛点问题。
【一键启用】生产跟踪|解决制造企业生产管理难题
利用自制工具,清除道岔积雪为运输生产保驾护航
由于受北方气候影响,每年冬季都会有冰雪覆盖铁路线路道岔,使得道岔在转换过程中,冰雪粘着在尖轨底部以及基本轨轨腰上,导致尖轨与基本轨不密贴,进路无法排放,信号灯无法按照规定显示,尤其是冶金企业,发生此现象后,一般采取使用酒精喷灯进行热处理,但由于尖轨底部雪块不宜热熔,处理时间较长,容易耽误生产。特别是咽喉道岔遭冰雪覆盖后,将会打乱正常的行车工作安排,使得铁路运输中断,无法正常运行,造成的损失无可估量。
|
传感器 机器学习/深度学习 物联网
物联网解决方案如何改善废物管理流程
每次将垃圾扔进垃圾箱时,垃圾都会流到某个地方,必须进行某种处理,以免对环境造成危害。许多城市的废物处理过程已转变为高度智能的运营管理活动。物联网,基于ML的废物管理平台增加了灵活的实时映射和跟踪功能,可以改善废物管理结果。
319 0
物联网解决方案如何改善废物管理流程