特斯拉自动驾驶系统秘密,来自特斯拉AI总监爆料

简介: 据外媒报道,特斯拉汽车公司人工智能(AI)总监安德烈·卡帕西(Andrej Karpathy)日前参加2018年TRAIN AI大会时,剖析了该公司构建自动驾驶仪(Autopilot)计算机视觉解决方案的方法。

据外媒报道,特斯拉汽车公司人工智能(AI)总监安德烈·卡帕西(Andrej Karpathy)日前参加2018年TRAIN AI大会时,剖析了该公司构建自动驾驶仪(Autopilot)计算机视觉解决方案的方法。据介绍,Autopilot编程团队主要分为两部分:第一个团队构建了神经网络本身,而第二个团队则专注于神经网络的实际编程,它包括选择已标注的图像,帮助神经网络学习。他的演讲题目是“构建软件2.0堆栈”。

image

卡帕西的任务是将传统的、基于规则的编程方法与神经网络(也称机器学习或AI)运行时使用的编程方法区分开来。在典型的互联网术语中,他使用了神经网络编程软件2.0,用以与基于规则编程的软件1.0进行区别。事实证明,两者之间的差异是相当大的,编程神经网络与编程网页或智能手机应用程序是完全不同的。

image

近年来,随着计算机视觉解决方案越来越难以为图像中的每个可能对象定义规则,这一点变得尤其明显。然而,这些挑战并不能阻止程序员尝试甚至执行极其复杂的计算机视觉分析任务。

在1990年到2010年之间的照片分析中,早期的研究奠定了现代聚焦于视频图像分析的基础,而视频图像分析的帧率越高,对计算机资源的压力就越大。像特斯拉自动驾驶仪(Autopilot)这样的应用,要求所有处理过程都必须是实时的,甚至要使用实时数据来预测附近的司机会会做什么或可能做什么,以降低碰撞危险。

image

特斯拉的自动驾驶仪解决方案非常依赖计算机视觉,而不是激光雷达和其他传感器,因为特斯拉的团队认为,计算机视觉在根本上更加卓越,强大的摄像头阵列足以支持完全自动驾驶解决方案。

卡帕西深入探究了特斯拉团队用来破解自动驾驶仪计算机视觉难题的方法。自动驾驶仪编程团队主要分为两部分:第一个团队构建了神经网络本身,而第二个团队则专注于神经网络的实际编程,它包括选择已标注的图像,帮助神经网络学习。

正如编程代码必须高效和有效一样,卡帕西注意到用于编程神经网络的图像必须够大、够多样化以及干净。为神经网络编程更多的是识别异常,并为正确的行为编写软件2.0堆栈,而不是为正常情况下的系统编程。

image

我们可以用简单的方法来比较为图像编程的神经网络,它就像十字路口的交通信号。大多数信号系统都有标准的红黄绿设置,可以通过提供红灯图像并将其标记为指示车辆应该停车的信号来进行建模。

与此相对应,绿灯表示车辆可以继续通过十字路口。黄色是同样重要的指标,但比红色和绿色交替出现的频率要低得多。神经网络必须被编程以同样好地理解这三者的关系,即使在现实世界中黄色灯光出现的频率远低于绿色和红色。

特斯拉认为,从根本上说,与人类驾驶汽车相比,该公司自动驾驶仪解决方案将会在行驶过程中提供更安全的驾驶体验。这是有意义的,也十分重要,但这只是暗示了一种更广泛的可能性,即车辆在世界上任何地方、任何情况下都能自动驾驶。

与人类驾驶汽车相比,特斯拉的自动驾驶汽车如今已经帮助减少4倍车祸死亡人数。其首席执行官伊隆·马斯克(Elon Musk)相信,将来其至少可以提供10倍的改进效果。

原文发布时间为:2018-07-25
本文作者:北风教育
本文来自云栖社区合作伙伴“北风教育”,了解相关信息可以关注“北风教育

相关文章
|
5天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
38 9
|
16天前
|
人工智能 自然语言处理 机器人
对话阿里云 CIO 蒋林泉:AI 时代,企业如何做好智能化系统建设?
10 月 18 日, InfoQ《C 位面对面》栏目邀请到阿里云 CIO 及 aliyun.com 负责人蒋林泉(花名:雁杨),就 AI 时代企业 CIO 的角色转变、企业智能化转型路径、AI 落地实践与人才培养等主题展开了讨论。
471 45
对话阿里云 CIO 蒋林泉:AI 时代,企业如何做好智能化系统建设?
|
14天前
|
存储 人工智能 自然语言处理
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
|
4天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗领域的革命:智能诊断系统的未来
在科技日新月异的今天,人工智能(AI)技术正逐渐渗透到我们生活的每一个角落,其中医疗领域尤为显著。本文将探讨AI在医疗诊断中的应用及其带来的变革,重点介绍智能诊断系统的发展现状与未来趋势。通过深入浅出的方式,我们将揭示AI如何改变传统医疗模式,提高诊断效率和准确性,最终造福广大患者。
|
9天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
73 6
|
10天前
|
机器学习/深度学习 人工智能 自动驾驶
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
本文介绍了AI和大模型在机器人、自动驾驶和智能座舱领域的最新应用和技术进展。涵盖多模态大语言模型在机器人控制中的应用、移动机器人(AMRs)的规模化部署、协作机器人的智能与安全性提升、AR/VR技术在机器人培训中的应用、数字孪生技术的优化作用、Rust语言在机器人编程中的崛起,以及大模型在自动驾驶中的核心地位、端到端自动驾驶解决方案、全球自动驾驶的前沿进展、智能座舱的核心技术演变和未来发展趋势。
30 2
|
2天前
|
人工智能 自然语言处理 安全
AI技术在智能客服系统中的应用与挑战
【10月更文挑战第28天】本文将深入探讨人工智能(AI)技术在智能客服系统中的应用及其面临的挑战。我们将通过实例分析,了解AI如何改善客户服务体验,提高效率和降低成本。同时,我们也将关注AI在实际应用中可能遇到的问题,如语义理解、情感识别和数据安全等,并提出相应的解决方案。
|
25天前
|
人工智能 安全 自动驾驶
【通义】AI视界|英特尔和AMD“史无前例”首次合作,组建X86生态系统咨询小组
本文概览了近期科技领域的五大热点新闻,包括联想与Meta合作推出个人AI智能体“AI Now”,英特尔和AMD首次合作组建X86生态系统咨询小组,特斯拉计划大规模生产自动驾驶出租车,前Palantir首席信息安全官加盟OpenAI,以及Meta因涉嫌损害青少年心理健康面临美国多州诉讼。更多资讯,请访问通义平台。
|
5天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
23 0
|
12天前
|
人工智能 自然语言处理 机器人
对话阿里云CIO蒋林泉:AI时代,企业如何做好智能化系统建设?
10月18日, InfoQ《C 位面对面》栏目邀请到阿里云CIO及aliyun.com负责人蒋林泉(花名:雁杨),就AI时代企业CIO的角色转变、企业智能化转型路径、AI落地实践与人才培养等主题展开了讨论。

热门文章

最新文章