MaxCompute 中的Code Generation技术简介

简介: 前言       在《数据库系统中的Code Generation技术介绍》中,我们简单介绍了一下Code Generation技术及其在大规模OLAP系统,特别是大规模分布式OLAP系统中的重要性。MaxCompute采用了Code Generation技术来提高计算效率。在MaxCompute

前言   

   在《数据库系统中的Code Generation技术介绍》中,我们简单介绍了一下Code Generation技术及其在大规模OLAP系统,特别是大规模分布式OLAP系统中的重要性。MaxCompute采用了Code Generation技术来提高计算效率。在MaxCompute2.0中,我们又引入了基于LLVM的JIT(Just In Time) Code Generation技术。结合向量化的执行引擎,基于SIMD技术的执行效率优化等方式,较之MaxCompute 1.0,MaxCompute 2.0在性能方便有了较大的提升,具体可以参照《MaxCompute2.0性能评测:更强大、更高效之上的更快速》。

MaxCompute 1.0中的Code Generation

   如上图,MaxCompute 1.0采用了静态的Code Generation技术,工作主要在MaxCompute控制集群中名为“Executor”的角色上完成。其流程如下:
  1. 用户的SQL语句在Executor上经过Parsing和Optimization之后,生成对应的查询计划。
  2. Executor上的Code Generation模块将查询计划翻译成一个名为“mapred.cpp”的C++源文件。如上图所示,查询计划中的每一个Task(就是MaxCompute作业中的一个Stage)会被翻译成C++中的一个Class, 而所有的处理逻辑被生成到该Class的Process()方法当中。
  3. Executor调用g++将“mapred.cpp”编译成一个动态库,并将其下发到计算集群中的每一个Worker上。
  4. 被调度起来的Worker会Load该动态库,调用相应的Process()方法以完成计算逻辑。
   可以看到,利用Code Generation技术,对于每一个SQL来说执行时代码都是经过定制的,因此执行效率较传统的Volcano Model更好。但是,其中也有一些问题。
  1. g++ 编译还是比较消耗CPU/内存的,特别是当优化选项开到O2以上的时候。特别是用户SQL比较复杂的情况下(有些SQL在SELECT语句中有多达上千个表达式,或者表达式的嵌套计算特别深入),生成的C++源文件也比较大,编译更加耗时。在实际生产中,我们见过编译耗时数十秒,消耗上G内存的情况。
  2. 生成的动态库在控制集群和计算集群之间传输也会有带来一定的网络开销。因为这个动态库的与SQL逻辑紧密相关的,因此无法复用,因此每个SQL都会经历编译,下发的过程,在任务提交比较频繁的情况下,控制集群的稳定性会收到一定挑战。
  3. 因为较高的编译时开销,这种Code Generation的方式在处理复杂的语句加中小数据规模查询的场景,比如service mode下,overhead太大。

MaxCompute 2.0中的Code Generation


 MaxCompute 2.0采用了基于LLVM的JIT Code Generation技术。所谓JIT,就是程序在运行期间根据需要动态生成相应的机器指令。这样,整个Code Generation的工作由控制集群移交到了真正执行计算逻辑的计算集群各个Worker上。其流程如下:
  1. 和MaxCompute 1.0中一样,用户的SQL语句在Executor上经过Parsing和Optimization之后,生成对应的查询计划。
  2. 查询计划直接被发送到计算集群各个Worker上。
  3. MaxCompute 2.0执行引擎的Code Generation模块Load查询计划,并利用LLVM C++ API生成相应的机器码。Code Generation模块返回一个函数指针作为调用的入口。
  4. Worker通过调用Code Generation模块返回的函数指针以完成计算逻辑。
   与MaxCompute 1.0相比,MaxCompute 2.0中Code Generation速度有明显提升。在1.0中,一个SQL的平均Code Generation耗时大概在2-3s左右,这个时间在2.0中被缩短到100 - 200ms。因为在2.0中Code Generation都在计算集群的Worker上完成,因此相对来说减轻了控制集群的压力,有助于MaxCompute控制集群的稳定性。此外,因为MaxCompute 2.0的执行引擎是复用的(不因为SQL不同而不一样),因此无需像1.0中一样,在控制集群与计算集群之间传输动态库,降低了控制集群与计算机群之间的网络负载。

后续工作

   目前,MaxCompute 2.0 的执行引擎还是以Volcano Model为基础。只是在Volcano Model中各个算子之间以Batch模式传递数据,并且以列式执行的方式提高执行速度。基于LLVM的JIT Code Generation现在主要用在表达式计算,Streamline等热点部分。之后,我们准备尝试Full Stage的Code Generation, 类似http://www.hyper-db.com/。 有兴趣的同学可以看看这个:http://www.vldb.org/pvldb/vol4/p539-neumann.pdf。 附件中的PDF结合了《数据库系统中的Code Generation技术介绍》和本文的部分内容,有兴趣的同学可以作为参考。


欢迎加入“数加·MaxCompute购买咨询”钉钉群(群号: 11782920)进行咨询,群二维码如下:

96e17df884ab556dc002c912fa736ef6558cbb51 
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
存储 人工智能 大数据
云栖2025|阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
阿里云在云栖大会发布“湖流一体”数智平台,推出DLF-3.0全模态湖仓、实时计算Flink版升级及EMR系列新品,融合实时化、多模态、智能化技术,打造AI时代高效开放的数据底座,赋能企业数字化转型。
675 0
|
4月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
400 4
|
5月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
2月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
4月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
4月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
|
5月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
|
5月前
|
存储 分布式计算 算法
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。
|
SQL 分布式计算 大数据
MaxCompute 聚簇优化推荐简介
在大数据计算中,Shuffle 是资源消耗最大的环节之一。MaxCompute 提供聚簇优化推荐功能,通过调整 Cluster 表结构,有效减少 Shuffle 量,显著提升作业性能并节省计算资源。实际案例显示,该功能可帮助用户每日节省数 PB 的 Shuffle 数据量及数千 CU 的计算成本。
214 0

热门文章

最新文章

相关产品

  • 云原生大数据计算服务 MaxCompute