数据结构笔记--二叉查找树概述以及java代码实现

简介: 一些概念:   二叉查找树的重要性质:对于树中的每一个节点X,它的左子树任一节点的值均小于X,右子树上任意节点的值均大于X.   二叉查找树是java的TreeSet和TreeMap类实现的基础.   由于树的递归定义,二叉查找树的代码实现也基本上都是使用递归的函数,二叉查找树的平均深度是O(logN).

一些概念:

  二叉查找树的重要性质:对于树中的每一个节点X,它的左子树任一节点的值均小于X,右子树上任意节点的值均大于X.

  二叉查找树是java的TreeSet和TreeMap类实现的基础.

  由于树的递归定义,二叉查找树的代码实现也基本上都是使用递归的函数,二叉查找树的平均深度是O(logN).

  因为二叉查找树要求所有的节点都可以进行排序.所以编写时代码时需要一个Comparable泛型接口,当需要对类中的对象进行排序的时候,就需要实现这个泛型接口,里边定义了一个public int compareTo(Object o)方法,接受一个Object作为参数,java中String,Integer等类都实现了这个接口.

java代码实现:

  remove方法:在查找树的代码实现中,最难得是删除,因为这涉及到三种情况:

    被删除节点是树叶节点(没有子树):最简单,直接删除,将该节点置为null即可

    被删除节点有一个子节点(左子树或右子树):是该节点的父节点指向该节点的子节点(左或右).见图1

    被删除节点有两个子节点:用其右子树中的最小值代替该节点上的值,删除其右子树上的最小值.见图2.

  

  1 package com.wang.tree;
  2 
  3 public class BinarySearchTree<T extends Comparable<T>>{
  4 
  5     
  6     private static class Node<T>{
  7         private T data;
  8         private Node<T> left;
  9         private Node<T> right;
 10         
 11         public Node(T data){
 12             this(data,null,null);
 13         }
 14         public Node(T data, Node<T> left, Node<T> right) {
 15             this.data = data;
 16             this.left = left;
 17             this.right = right;
 18         }
 19     }
 20     
 21     //私有变量 根节点root
 22     private Node<T> root;
 23     
 24     //无参构造函数,根节点为null
 25     public BinarySearchTree(){
 26         root=null;
 27     }
 28     
 29     //清空二叉查找树
 30     public void makeEmpty(){
 31         root=null;
 32     }
 33     //判断树是否为空
 34     public boolean isEmpty(){
 35         
 36         return root==null;
 37     }
 38     //查找集合中是否有元素value,有返回true
 39     public boolean contains(T value){
 40         
 41         return contains(value,root);
 42     }
 43     
 44     private boolean contains(T value, Node<T> t) {
 45         
 46         if(t==null){
 47             return false;
 48         }
 49         int result=value.compareTo(t.data);
 50         if(result<0){
 51             return contains(value,t.left);
 52         }else if(result>0){
 53             return contains(value,t.right);
 54         }else{
 55             return true;
 56         }
 57     }
 58 
 59     //查找集合中的最小值
 60     public T findMin(){
 61         
 62         return  findMin(root).data;
 63     }
 64     private Node<T> findMin(Node<T> t) {
 65         if(t==null){
 66             return null;
 67         }else if(t.left==null){
 68             return t;
 69         }
 70         
 71         
 72         return findMin(t.left);
 73     }
 74 
 75     //查找集合中的最大值
 76     public T findMax(){
 77         
 78         return findMax(root).data;
 79     }
 80     
 81     private Node<T> findMax(Node<T> t) {
 82         if(t!=null){
 83             while(t.right!=null){
 84                 t=t.right;
 85             }
 86         }
 87         
 88         return t;
 89     }
 90 
 91     //插入元素
 92     public void insert(T value){
 93         
 94         root =insert(value,root);
 95     }
 96 
 97     private Node<T> insert(T value, Node<T> t) {
 98         if(t==null){
 99             return new Node(value,null,null);
100         }
101         int result=value.compareTo(t.data);
102         if(result<0){
103             t.left=insert(value,t.left);
104         }else if(result>0){
105             t.right=insert(value,t.right);
106         }
107         return t;
108     }
109     //移除元素
110     public void remove(T value){
111         root=remove(value,root);
112         
113         
114     }
115 
116     private Node<T> remove(T value, Node<T> t) {
117         if(t==null){
118             return t;
119         }
120         
121         int result=value.compareTo(t.data);
122         if(result<0){
123             t.left=remove(value,t.left);
124         }else if(result>0){
125             t.right=remove(value,t.right);
126         }else if(t.left!=null&&t.right!=null){//如果被删除节点有两个儿子
127             //1.当前节点值被其右子树的最小值代替
128             t.data=findMin(t.right).data;
129             //将右子树的最小值删除
130             t.right=remove(t.data, t.right);
131         }else{
132             //如果被删除节点是一个叶子 或只有一个儿子
133             t=(t.left!=null)?t.left:t.right;
134         }
135         
136         return t;
137     }
138     
139     //中序遍历打印
140     public void printTree(){
141         printTree(root);
142     }
143 
144     private void printTree(Node<T> t) {
145         
146         if(t!=null){
147             printTree(t.left);
148             System.out.println(t.data);
149             printTree(t.right);
150         }
151     }
152 }

  测试代码:

package com.wang.tree;

public class TestBST {

    public static void main(String[] args) {
        
        BinarySearchTree<Integer> bst=new BinarySearchTree<>();
        bst.insert(5);
        bst.insert(7);
        bst.insert(3);
        bst.insert(1);
        bst.insert(9);
        bst.insert(6);
        bst.insert(4);
        System.out.println("最小值:"+bst.findMin());
        System.out.println("最大值:"+bst.findMax());
        System.out.println("查找元素9是否存在:"+bst.contains(9));
        System.out.println("查找元素8是否存在:"+bst.contains(8));
        System.out.println("遍历二叉树");
        bst.printTree();
    }
}

打印结果:

最小值:1
最大值:9
查找元素9是否存在:true
查找元素8是否存在:false
遍历二叉树
1
3
4
5
6
7
9

 

相关文章
|
1天前
|
Java 数据库连接 Maven
mybatis使用一:springboot整合mybatis、mybatis generator,使用逆向工程生成java代码。
这篇文章介绍了如何在Spring Boot项目中整合MyBatis和MyBatis Generator,使用逆向工程来自动生成Java代码,包括实体类、Mapper文件和Example文件,以提高开发效率。
mybatis使用一:springboot整合mybatis、mybatis generator,使用逆向工程生成java代码。
|
1天前
|
存储 缓存 Java
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
这篇文章详细介绍了Java中的IO流,包括字符与字节的概念、编码格式、File类的使用、IO流的分类和原理,以及通过代码示例展示了各种流的应用,如节点流、处理流、缓存流、转换流、对象流和随机访问文件流。同时,还探讨了IDEA中设置项目编码格式的方法,以及如何处理序列化和反序列化问题。
17 1
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
|
3天前
|
存储 Java
数据结构第二篇【关于java线性表(顺序表)的基本操作】
数据结构第二篇【关于java线性表(顺序表)的基本操作】
17 6
|
3天前
|
Java 语音技术 容器
java数据结构泛型
java数据结构泛型
17 5
|
2天前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
3天前
|
并行计算 Java API
探索Java中的Lambda表达式:简化代码,提高可读性
【10月更文挑战第5天】Lambda表达式在Java 8中引入,旨在简化集合操作和并行计算。本文通过介绍Lambda表达式的基本概念、语法结构以及实际应用示例,展示了如何利用这一特性编写更加简洁、易读的代码。我们将从Lambda的基础入手,逐步深入到其在函数式接口中的应用,并探讨其对Java编程范式的影响。
|
3天前
|
存储 缓存 Java
【用Java学习数据结构系列】HashMap与TreeMap的区别,以及Map与Set的关系
【用Java学习数据结构系列】HashMap与TreeMap的区别,以及Map与Set的关系
22 1
|
3天前
|
存储 搜索推荐 算法
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
15 1
|
3天前
|
算法 Java API
【用Java学习数据结构系列】对象的比较(Priority Queue实现的前提)
【用Java学习数据结构系列】对象的比较(Priority Queue实现的前提)
13 1
|
3天前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
14 1