一文看懂 kafka 机制

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介:

Kafka的特性

  • 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作。
  • 可扩展性:kafka集群支持热扩展
  • 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
  • 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)
  • 高并发:支持数千个客户端同时读写

Kafka的使用场景

  • 日志收集:一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。
  • 消息系统:解耦和生产者和消费者、缓存消息等。
  • 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
  • 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
  • 流式处理:比如spark streaming和storm
  • 事件源

Kafka部分名词解释如下

Kafka中发布订阅的对象是topic。我们可以为每类数据创建一个topic,把向topic发布消息的客户端称作producer,从topic订阅消息的客户端称作consumer。Producers和consumers可以同时从多个topic读写数据。一个kafka集群由一个或多个broker服务器组成,它负责持久化和备份具体的kafka消息。

  • Broker:Kafka节点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。
  • Topic:一类消息,消息存放的目录即主题,例如page view日志、click日志等都可以以topic的形式存在,Kafka集群能够同时负责多个topic的分发。
  • Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列
  • Segment:partition物理上由多个segment组成,每个Segment存着message信息
  • Producer : 生产message发送到topic下的partition leader.
  • Consumer : 订阅topic消费message, consumer作为一个线程来消费
  • Consumer Group:一个Consumer Group包含多个consumer, 这个是预先在配置文件中配置好的。
    DN1

Kakfa Broker Leader的选举

Kakfa Broker集群受Zookeeper管理。所有的Kafka Broker节点一起去Zookeeper上注册一个临时节点,因为只有一个Kafka Broker会注册成功,其他的都会失败,所以这个成功在Zookeeper上注册临时节点的这个Kafka Broker会成为Kafka Broker Controller,其他的Kafka broker叫Kafka Broker follower。

这个Controller会监听其他的Kafka Broker的所有信息,例如:一旦有一个broker宕机了,这个kafka broker controller会读取该宕机broker上所有的partition在zookeeper上的状态,并选取ISR列表中的一个replica作为partition leader(如果ISR列表中的replica全挂,选一个幸存的replica作为leader;

如果该partition的所有的replica都宕机了,则将新的leader设置为-1,等待恢复,等待ISR中的任一个Replica“活”过来,并且选它作为Leader;

或选择第一个“活”过来的Replica(不一定是ISR中的)作为Leader),这个broker宕机的事情,kafka controller也会通知zookeeper,zookeeper就会通知其他的kafka broker。

如果这个kafka broker controller宕机了,在zookeeper上面的那个临时节点就会消失,此时所有的kafka broker又会一起去Zookeeper上注册一个临时节点,Kafka的核心是日志文件,日志文件在集群中的同步是分布式数据系统最基础的要素。

Kafka动态维护了一个同步状态的副本的集合,简称ISR,在这个集合中的节点都是和leader保持高度一致的,任何一条消息必须被这个集合中的每个节点读取并追加到日志中了,才会通知外部这个消息已经被提交了。

因此这个集合中的任何一个节点随时都可以被选为leader,ISR在ZooKeeper中维护。ISR中有f+1个节点,就可以允许在f个节点down掉的情况下不会丢失消息并正常提供服。ISR的成员是动态的,如果一个节点被淘汰了,当它重新达到“同步中”的状态时,他可以重新加入ISR,这种leader的选择方式是非常快速的,适合kafka的应用场景。

kafka消息生产

DN2

  • Topic & Partition:Topic相当于传统消息系统MQ中的一个队列queue,producer端发送的message必须指定是发送到哪个topic,但是不需要指定topic下的哪个partition,因为kafka会把收到的message进行load balance,均匀的分布在这个topic下的不同的partition上( hash(message) % [partition数量] )。

物理上存储上,这个topic会分成一个或多个partition,每个partiton相当于是一个子queue。在物理结构上,每个partition对应一个物理的目录(文件夹),文件夹命名是[topicname]_[partition]_[序号],一个topic可以有无数多的partition,根据业务需求和数据量来设置。

在kafka配置文件中可随时更高num.partitions参数来配置更改topic的partition数量,在创建Topic时通过参数指定parittion数量。Topic创建之后通过Kafka提供的工具也可以修改partiton数量。

一般来说,(1)一个Topic的Partition数量大于等于Broker的数量,可以提高吞吐率。(2)同一个Partition的备份(Replica)尽量分散到不同的机器,高可用。

当add a new partition的时候,partition里面的message不会重新进行分配,原来的partition里面的message数据不会变,新加的这个partition刚开始是空的,随后进入这个topic的message就会重新参与所有partition的load balance

  • Partition Replica(备份):每个partition可以在其他的kafka broker节点上存副本,以便某个kafka broker节点宕机不会影响这个kafka集群。存replica副本的方式是按照kafka broker的顺序存。

例如有5个kafka broker节点,某个topic有3个partition,每个partition存2个副本,那么partition1存broker1,broker2,partition2存broker2,broker3。。。以此类推(replica副本数目不能大于kafka broker节点的数目,否则报错。

这里的replica数其实就是partition的副本总数,其中包括一个leader,其他的就是copy副本)。这样如果某个broker宕机,其实整个kafka内数据依然是完整的。但是,replica副本数越高,系统虽然越稳定,但是会带来资源和性能上的下降;replica副本少的话,也会造成系统丢数据的风险。

(1)怎样传送消息:Producer端使用zookeeper用来"发现"broker列表,以及和Topic下每个partition leader建立socket连接并发送消息,每个Topic下面有多个partition, 每个partition又有多个备份(Replica),以及一个Leader,消息仅会被发送到Topic下的其中一个partition的Leader,再由Leader发送给其他partition follower。

(如果让producer发送给每个replica那就太慢了), Producer客户端自己控制着消息被推送到哪些partition leader,不需要经过任何中介或其他路由转发。

为了实现这个特性,kafka集群中的每个broker都可以响应producer的请求,并返回topic的一些元信息,这些元信息包括哪些机器是存活的,topic的leader partition都在哪,现阶段哪些leader partition是可以直接被访问的。

(2)在向Producer发送ACK前需要保证有多少个Replica已经收到该消息:根据ack配的个数而定

(3)怎样处理某个Replica不工作的情况:如果这个部工作的partition replica不在ack列表中,就是producer在发送消息到partition leader上,partition leader向partition follower发送message没有响应而已,这个不会影响整个系统,也不会有什么问题。

如果这个不工作的partition replica在ack列表中的话,producer发送的message的时候会等待这个不工作的partition replca写message成功,但是会等到time out,然后返回失败因为某个ack列表中的partition replica没有响应,此时kafka会自动的把这个部工作的partition replica从ack列表中移除,以后的producer发送message的时候就不会有这个ack列表下的这个部工作的partition replica了。

(4)怎样处理Failed Replica恢复回来的情况:如果这个partition replica之前不在ack列表中,那么启动后重新受Zookeeper管理即可,之后producer发送message的时候,partition leader会继续发送message到这个partition follower上。

如果这个partition replica之前在ack列表中,此时重启后,需要把这个partition replica再手动加到ack列表中。(ack列表是手动添加的,出现某个部工作的partition replica的时候自动从ack列表中移除的)

  • Partition leader与follower:partition也有leader和follower之分。leader是主partition,producer写kafka的时候先写partition leader,再由partition leader push给其他的partition follower。partition leader与follower的信息受Zookeeper控制,一旦partition leader所在的broker节点宕机,zookeeper会冲其他的broker的partition follower上选择follower变为parition leader。
  • Topic分配partition和partition replica的算法:(1)将Broker(size=n)和待分配的Partition排序。(2)将第i个Partition分配到第(i%n)个Broker上。(3)将第i个Partition的第j个Replica分配到第((i + j) % n)个Broker上
  • Partition ack:当ack=1,表示producer写partition leader成功后,broker就返回成功,无论其他的partition follower是否写成功。当ack=2,表示producer写partition leader和其他一个follower成功的时候,broker就返回成功,无论其他的partition follower是否写成功。当ack=-1[parition的数量]的时候,表示只有producer全部写成功的时候,才算成功,kafka broker才返回成功信息。这里需要注意的是,如果ack=1的时候,一旦有个broker宕机导致partition的follower和leader切换,会导致丢数据。
  • message状态:在Kafka中,消息的状态被保存在consumer中,broker不会关心哪个消息被消费了被谁消费了,只记录一个offset值(指向partition中下一个要被消费的消息位置),这就意味着如果consumer处理不好的话,broker上的一个消息可能会被消费多次。
  • message有效期:Kafka会长久保留其中的消息,以便consumer可以多次消费,当然其中很多细节是可配置的。
  1. 不是严格的JMS, 因此kafka对消息的重复、丢失、错误以及顺序型没有严格的要求。(这是与AMQ最大的区别,所以没有用在支付领域)
  2. kafka提供at-least-once delivery,即当consumer宕机后,有些消息可能会被重复delivery。
  3. 因每个partition只会被consumer group内的一个consumer消费,故kafka保证每个partition内的消息会被顺序的订阅。
  4. Kafka为每条消息为每条消息计算CRC校验,用于错误检测,crc校验不通过的消息会直接被丢弃掉。

Consumer Group

各个consumer(consumer 线程)可以组成一个组(Consumer group ),partition中的每个message只能被组(Consumer group )中的一个consumer(consumer 线程)消费,如果一个message可以被多个consumer(consumer 线程)消费的话,那么这些consumer必须在不同的组。

Kafka不支持一个partition中的message由两个或两个以上的同一个consumer group下的consumer thread来处理,除非再启动一个新的consumer group。

所以如果想同时对一个topic做消费的话,启动多个consumer group就可以了,一般这种情况都是多个不同的业务逻辑,才会启动多个consumer group来处理一个topic,,但是要注意的是,这里的多个consumer的消费都必须是顺序读取partition里面的message,新启动的consumer默认从partition队列最头端最新的地方开始阻塞的读message。

它不能像AMQ那样可以多个BET作为consumer去互斥的(for update悲观锁)并发处理message,这是因为多个BET去消费一个Queue中的数据的时候,由于要保证不能多个线程拿同一条message,所以就需要行级别悲观所(for update),这就导致了consume的性能下降,吞吐量不够。

而kafka为了保证吞吐量,只允许同一个consumer group下的一个consumer线程去访问一个partition。如果觉得效率不高的时候,可以加partition的数量来横向扩展,那么再加新的consumer thread去消费。如果想多个不同的业务都需要这个topic的数据,起多个consumer group就好了,大家都是顺序的读取message,offsite的值互不影响。

这样没有锁竞争,充分发挥了横向的扩展性,吞吐量极高。这也就形成了分布式消费的概念。

当启动一个consumer group去消费一个topic的时候,无论topic里面有多个少个partition,无论我们consumer group里面配置了多少个consumer thread,这个consumer group下面的所有consumer thread一定会消费全部的partition;

即便这个consumer group下只有一个consumer thread,那么这个consumer thread也会去消费所有的partition。

因此,最优的设计就是,consumer group下的consumer thread的数量等于partition数量,这样效率是最高的。一个consumer thread处理一个partition。

如果这个consumer group里面consumer的数量小于topic里面partition的数量,就会有consumer thread同时处理多个partition(这个是kafka自动的机制,我们不用指定),但是总之这个topic里面的所有partition都会被处理到的。

如果这个consumer group里面consumer的数量大于topic里面partition的数量,多出的consumer thread就会闲着啥也不干,因为一个partition不可能被两个consumer thread去处理。

如果producer的流量增大,当前的topic的parition数量=consumer数量,这时候的应对方式就是扩展:增加topic下的partition,同时增加这个consumer group下的consumer。

  • Consumer Rebalance的触发条件:(1)Consumer增加或删除会触发 Consumer Group的Rebalance(2)Broker的增加或者减少都会触发 Consumer Rebalance
  • Consumer: Consumer处理partition里面的message的时候是O(1)顺序读取的。所以必须维护着上一次读到哪里的offsite信息。high level API,offset存于Zookeeper中,low level API的offset由自己维护。一般来说都是使用high level api的。
  • Kafka delivery guarantee(message传送保证):
    (1)At most once消息可能会丢,绝对不会重复传输;

消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中consumer进程失效(crash),导致部分消息未能继续处理.那么此后可能其他consumer会接管,但是因为offset已经提前保存,那么新的consumer将不能fetch到offset之前的消息(尽管它们尚没有被处理),

(2)At least once 消息绝对不会丢,但是可能会重复传输;
消费者fetch消息,然后处理消息,然后保存offset.如果消息处理成功之后,但是在保存offset阶段zookeeper异常或者consumer失效,导致保存offset操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once".

(3)kafka利用主键幂等性实现Exactly once每条信息肯定会被传输一次且仅传输一次,这是用户想要的。
最少1次+消费者的输出中额外增加已处理消息最大编号:由于已处理消息最大编号的存在,不会出现重复处理消息的情况。

在kafka中,当前读到哪条消息的offset值是由consumer来维护的,因此,consumer可以自己决定如何读取kafka中的数据。比如,consumer可以通过重设offset值来重新消费已消费过的数据。不管有没有被消费,kafka会保存数据一段时间,这个时间周期是可配置的,只有到了过期时间,kafka才会删除这些数据。(这一点与AMQ不一样,AMQ的message一般来说都是持久化到mysql中的,消费完的message会被delete掉)

其他JMS实现,消息消费的位置是有prodiver保留,以便避免重复发送消息或者将没有消费成功的消息重发等,同时还要控制消息的状态.这就要求JMS broker需要太多额外的工作.

在kafka中,partition中的消息只有一个consumer在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见kafka broker端是相当轻量级的.

当消息被consumer接收之后,consumer可以在本地保存最后消息的offset,并间歇性的向zookeeper注册offset.由此可见,consumer客户端也很轻量级。

kafka中consumer负责维护消息的消费记录,而broker则不关心这些,这种设计不仅提高了consumer端的灵活性,也适度的减轻了broker端设计的复杂度;

这是和众多JMS prodiver的区别.此外,kafka中消息ACK的设计也和JMS有很大不同,kafka中的消息是批量(通常以消息的条数或者chunk的尺寸为单位)发送给consumer,当消息消费成功后,向zookeeper提交消息的offset,而不会向broker交付ACK.

或许你已经意识到,这种"宽松"的设计,将会有"丢失"消息/"消息重发"的危险.

  • Delivery Mode : Kafka producer 发送message不用维护message的offsite信息,因为这个时候,offsite就相当于一个自增id,producer就尽管发送message就好了。

而且Kafka与AMQ不同,AMQ大都用在处理业务逻辑上,而Kafka大都是日志,所以Kafka的producer一般都是大批量的batch发送message,向这个topic一次性发送一大批message,load balance到一个partition上,一起插进去,offsite作为自增id自己增加就好。

但是Consumer端是需要维护这个partition当前消费到哪个message的offsite信息的,这个offsite信息,high level api是维护在Zookeeper上,low level api是自己的程序维护。

(Kafka管理界面上只能显示high level api的consumer部分,因为low level api的partition offsite信息是程序自己维护,kafka是不知道的,无法在管理界面上展示 )当使用high level api的时候,先拿message处理,再定时自动commit offsite+1(也可以改成手动), 并且kakfa处理message是没有锁操作的。

因此如果处理message失败,此时还没有commit offsite+1,当consumer thread重启后会重复消费这个message。但是作为高吞吐量高并发的实时处理系统,at least once的情况下,至少一次会被处理到,是可以容忍的。如果无法容忍,就得使用low level api来自己程序维护这个offsite信息,那么想什么时候commit offsite+1就自己搞定了。

Kafka高吞吐量

除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题,可以采用如下方式:

  1. 发布者每次可发布多条消息(将消息加到一个消息集合中发布), consumer每次迭代消费一条消息。以Batch的方式推送数据可以极大的提高处理效率,kafka Producer 可以将消息在内存中累计到一定数量后作为一个batch发送请求。

Batch的数量大小可以通过Producer的参数控制,参数值可以设置为累计的消息的数量(如500条)、累计的时间间隔(如100ms)或者累计的数据大小(64KB)。这里需要注意,可以根据不同的业务场景,设置不同的参数

  1. 不创建单独的cache,使用系统的page cache。发布者顺序发布,订阅者通常比发布者滞后一点点,直接使用Linux的page cache效果也比较后,同时减少了cache管理及垃圾收集的开销。
  2. 使用sendfile优化网络传输,减少一次内存拷贝

Sendfile 函数在两个文件描写叙述符之间直接传递数据(全然在内核中操作,传送),从而避免了内核缓冲区数据和用户缓冲区数据之间的拷贝,操作效率非常高,被称之为零拷贝。

Sendfile 函数的定义例如以下:

#include<sys/sendfile.h>
ssize_t sendfile(int out_fd,int in_fd,off_t*offset,size_t count);

传统方式read/write send/recv
在传统的文件传输里面(read/write方式),在实现上事实上是比較复杂的,须要经过多次上下文的切换。我们看一下例如以下两行代码:

1. read(file, tmp_buf, len);       
2. write(socket, tmp_buf, len);  

以上两行代码是传统的read/write方式进行文件到socket的传输。

当须要对一个文件进行传输的时候,其详细流程细节例如以下:

1、调用read函数,文件数据被copy到内核缓冲区
2、read函数返回。文件数据从内核缓冲区copy到用户缓冲区
3、write函数调用。将文件数据从用户缓冲区copy到内核与socket相关的缓冲区。
4、数据从socket缓冲区copy到相关协议引擎。

以上细节是传统read/write方式进行网络文件传输的方式,我们能够看到,在这个过程其中。文件数据实际上是经过了四次copy操作:

硬盘—>内核buf—>用户buf—>socket相关缓冲区(内核)—>协议引擎
新方式sendfile
而sendfile系统调用则提供了一种降低以上多次copy。提升文件传输性能的方法。
Sendfile系统调用是在2.1版本号内核时引进的:

  1. sendfile(socket, file, len);

执行流程例如以下:

1、sendfile系统调用,文件数据被copy至内核缓冲区
2、再从内核缓冲区copy至内核中socket相关的缓冲区
3、最后再socket相关的缓冲区copy到协议引擎

相较传统read/write方式,2.1版本号内核引进的sendfile已经降低了内核缓冲区到user缓冲区。再由user缓冲区到socket相关 缓冲区的文件copy,而在内核版本号2.4之后,文件描写叙述符结果被改变,sendfile实现了更简单的方式,系统调用方式仍然一样,细节与2.1版本号的 不同之处在于,当文件数据被拷贝到内核缓冲区时,不再将全部数据copy到socket相关的缓冲区,而是只将记录数据位置和长度相关的数据保存到 socket相关的缓存,而实际数据将由DMA模块直接发送到协议引擎,再次降低了一次copy操作。

4、其实对于producer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑.可以将任何在网络上传输的消息都经过压缩.kafka支持gzip/snappy等多种压缩方式

  • push-and-pull : Kafka中的Producer和consumer采用的是push-and-pull模式,即Producer只管向broker push消息,consumer只管从broker pull消息,两者对消息的生产和消费是异步的。
  • 负载均衡方面: Kafka提供了一个 metadata API来管理broker之间的负载(对Kafka0.8.x而言,对于0.7.x主要靠zookeeper来实现负载均衡)。
  • 同步异步:Producer采用异步push方式,极大提高Kafka系统的吞吐率(可以通过参数控制是采用同步还是异步方式)。
  • 离线数据装载:Kafka由于对可拓展的数据持久化的支持,它也非常适合向Hadoop或者数据仓库中进行数据装载。
  • 实时数据与离线数据:kafka既支持离线数据也支持实时数据,因为kafka的message持久化到文件,并可以设置有效期,因此可以把kafka作为一个高效的存储来使用,可以作为离线数据供后面的分析。当然作为分布式实时消息系统,大多数情况下还是用于实时的数据处理的,但是当cosumer消费能力下降的时候可以通过message的持久化在淤积数据在kafka。
  • 插件支持:现在不少活跃的社区已经开发出不少插件来拓展Kafka的功能,如用来配合Storm、Hadoop、flume相关的插件。
  • 峰值: 在访问量剧增的情况下,kafka水平扩展, 应用仍然需要继续发挥作用
  • 可恢复性: 系统的一部分组件失效时,由于有partition的replica副本,不会影响到整个系统。
  • 顺序保证性:由于kafka的producer的写message与consumer去读message都是顺序的读写,保证了高效的性能。
  • 缓冲:由于producer那面可能业务很简单,而后端consumer业务会很复杂并有数据库的操作,因此肯定是producer会比consumer处理速度快,如果没有kafka,producer直接调用consumer,那么就会造成整个系统的处理速度慢,加一层kafka作为MQ,可以起到缓冲的作用。

消息持久化

  • 消息格式
    每个log entry格式为"4个字节的数字N表示消息的长度" + "N个字节的消息内容";每个日志都有一个offset来唯一的标记一条消息,offset的值为8个字节的数字,表示此消息在此partition中所处的起始位置..每个partition在物理存储层面,有多个log file组成(称为segment).segment file的命名为"最小offset".kafka.例如"00000000000.kafka";其中"最小offset"表示此segment中起始消息的offset.

获取消息时,需要指定offset和最大chunk尺寸,offset用来表示消息的起始位置,chunk size用来表示最大获取消息的总长度(间接的表示消息的条数).根据offset,可以找到此消息所在segment文件,然后根据segment的最小offset取差值,得到它在file中的相对位置,直接读取输出即可.

  • message持久化:Kafka中会把消息持久化到本地文件系统中,并且保持o(1)极高的效率。我们众所周知IO读取是非常耗资源的性能也是最慢的,这就是为了数据库的瓶颈经常在IO上,需要换SSD硬盘的原因。但是Kafka作为吞吐量极高的MQ,却可以非常高效的message持久化到文件。
    这是因为Kafka是顺序写入O(1)的时间复杂度,速度非常快。也是高吞吐量的原因。由于message的写入持久化是顺序写入的,因此message在被消费的时候也是按顺序被消费的,保证partition的message是顺序消费的。一般的机器,单机每秒100k条数据。

kafka使用文件存储消息(append only log),这就直接决定kafka在性能上严重依赖文件系统的本身特性.且无论任何OS下,对文件系统本身的优化是非常艰难的.文件缓存/直接内存映射等是常用的手段.因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数.对于kafka而言,较高性能的磁盘,将会带来更加直接的性能提升.

  • 消息存储
    Kafka高度依赖文件系统来存储和缓存消息(AMQ的nessage是持久化到mysql数据库中的),因为一般的人认为磁盘是缓慢的,这导致人们对持久化结构具有竞争性持怀疑态度。其实,磁盘的快或者慢,这决定于我们如何使用磁盘。因为磁盘线性写的速度远远大于随机写。线性读写在大多数应用场景下是可以预测的。
  • 每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。
  • 每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。

推荐内容;大数据日志传输之Kafka实战
文章来源:https://blog.csdn.net/caohao0591/article/details/80949616

相关文章
|
6月前
|
消息中间件 存储 算法
深入了解Kafka的数据持久化机制
深入了解Kafka的数据持久化机制
374 0
|
1月前
|
消息中间件 Java 大数据
Kafka ISR机制详解!
本文详细解析了Kafka的ISR(In-Sync Replicas)机制,阐述其工作原理及如何确保消息的高可靠性和高可用性。ISR动态维护与Leader同步的副本集,通过不同ACK确认机制(如acks=0、acks=1、acks=all),平衡可靠性和性能。此外,ISR机制支持故障转移,当Leader失效时,可从ISR中选取新的Leader。文章还包括实例分析,展示了ISR在不同场景下的变化,并讨论了其优缺点,帮助读者更好地理解和应用ISR机制。
43 0
Kafka ISR机制详解!
|
1月前
|
消息中间件 Java Kafka
Kafka ACK机制详解!
本文深入剖析了Kafka的ACK机制,涵盖其原理、源码分析及应用场景,并探讨了acks=0、acks=1和acks=all三种级别的优缺点。文中还介绍了ISR(同步副本)的工作原理及其维护机制,帮助读者理解如何在性能与可靠性之间找到最佳平衡。适合希望深入了解Kafka消息传递机制的开发者阅读。
155 0
|
3月前
|
消息中间件 负载均衡 Java
揭秘Kafka背后的秘密!Kafka 架构设计大曝光:深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据处理及流传输设计的高效率消息系统。其核心特性包括高吞吐量、低延迟及出色的可扩展性。Kafka采用分布式日志模型,支持数据分区与副本,确保数据可靠性和持久性。系统由Producer(消息生产者)、Consumer(消息消费者)及Broker(消息服务器)组成。Kafka支持消费者组,实现数据并行处理,提升整体性能。通过内置的故障恢复机制,即使部分节点失效,系统仍能保持稳定运行。提供的Java示例代码展示了如何使用Kafka进行消息的生产和消费,并演示了故障转移处理过程。
50 3
|
3月前
|
消息中间件 Java Kafka
如何在Kafka分布式环境中保证消息的顺序消费?深入剖析Kafka机制,带你一探究竟!
【8月更文挑战第24天】Apache Kafka是一款专为实时数据管道和流处理设计的分布式平台,以其高效的消息发布与订阅功能著称。在分布式环境中确保消息按序消费颇具挑战。本文首先介绍了Kafka通过Topic分区实现消息排序的基本机制,随后详细阐述了几种保证消息顺序性的策略,包括使用单分区Topic、消费者组搭配单分区消费、幂等性生产者以及事务支持等技术手段。最后,通过一个Java示例演示了如何利用Kafka消费者确保消息按序消费的具体实现过程。
119 3
|
3月前
|
消息中间件 负载均衡 Java
"深入Kafka核心:探索高效灵活的Consumer机制,以Java示例展示数据流的优雅消费之道"
【8月更文挑战第10天】在大数据领域,Apache Kafka凭借其出色的性能成为消息传递与流处理的首选工具。Kafka Consumer作为关键组件,负责优雅地从集群中提取并处理数据。它支持消息的负载均衡与容错,通过Consumer Group实现消息的水平扩展。下面通过一个Java示例展示如何启动Consumer并消费数据,同时体现了Kafka Consumer设计的灵活性与高效性,使其成为复杂消费场景的理想选择。
116 4
|
3月前
|
消息中间件 负载均衡 Java
"Kafka核心机制揭秘:深入探索Producer的高效数据发布策略与Java实战应用"
【8月更文挑战第10天】Apache Kafka作为顶级分布式流处理平台,其Producer组件是数据高效发布的引擎。Producer遵循高吞吐、低延迟等设计原则,采用分批发送、异步处理及数据压缩等技术提升性能。它支持按消息键值分区,确保数据有序并实现负载均衡;提供多种确认机制保证可靠性;具备失败重试功能确保消息最终送达。Java示例展示了基本配置与消息发送流程,体现了Producer的强大与灵活性。
65 3
|
4月前
|
消息中间件 存储 监控
深入理解Kafka核心设计及原理(六):Controller选举机制,分区副本leader选举机制,再均衡机制
深入理解Kafka核心设计及原理(六):Controller选举机制,分区副本leader选举机制,再均衡机制
91 1
|
3月前
|
消息中间件 Java Kafka
SpringBoot Kafka SSL接入点PLAIN机制收发消息
SpringBoot Kafka SSL接入点PLAIN机制收发消息
37 0
|
3月前
|
消息中间件 安全 Kafka
Flink与Kafka的终极联盟:揭秘如何在一瞬间切换SASL机制,保护您的数据不受黑客侵袭!
【8月更文挑战第7天】Apache Flink作为高性能流处理框架,在与Kafka集成时确保数据安全至关重要。通过配置`KafkaConsumer`使用SASL机制如SCRAM-SHA-256或PLAIN,可有效防止未授权访问。SCRAM-SHA-256采用强化的身份验证流程提高安全性,而PLAIN机制则相对简单。配置涉及设置`properties`参数,包括指定`sasl.mechanism`、`security.protocol`及JAAS认证信息。合理选择和配置这些参数对于保护Flink应用与Kafka间的数据通信安全至关重要。
71 0

热门文章

最新文章