sklearn调包侠之逻辑回归

简介: 本系列教程为《机器学习实战》的读书笔记。首先,讲讲写本系列教程的原因:第一,《机器学习实战》的代码由Python2编写,有些代码在Python3上运行已会报错,本教程基于Python3进行代码的修订;第二:之前看了一些机器学习的书籍,没有进行记录,很快就忘记掉了,通过编写教程也是一种复习的过程;第三,机器学习相对于爬虫和数据分析而言,学习难度更大,希望通过本系列文字教程,让读者在学习机器学习的路上少走弯路。

本系列教程为《机器学习实战》的读书笔记。首先,讲讲写本系列教程的原因:

第一,《机器学习实战》的代码由Python2编写,有些代码在Python3上运行已会报错,本教程基于Python3进行代码的修订.

第二:之前看了一些机器学习的书籍,没有进行记录,很快就忘记掉了,通过编写教程也是一种复习的过程.

第三,机器学习相对于爬虫和数据分析而言,学习难度更大,希望通过本系列文字教程,让读者在学习机器学习的路上少走弯路。

算法原理

传送门:机器学习实战之Logistic回归(https://www.jianshu.com/p/96566542b07a

正则化

这里补充下正则化的知识。当一个模型太复杂时,就容易过拟合,解决的办法是减少输入特征的个数,或者获取更多的训练样本。正则化也是用来解决模型过拟合的一种方法。常用的有L1和L2范数做为正则化项。

L1范数 L1范数作为正则化项,会让模型参数θ稀疏话,就是让模型参数向量里为0的元素尽量多。L1就是在成本函数后加入:

image

L2范数 而L2范数作为正则化项,则是让模型参数尽量小,但不会为0,即尽量让每个特征对预测值都有一些小的贡献。L2就是在成本函数后加入:

image

实战——乳腺癌检测

数据导入

本次实战依旧是使用sklearn中的数据集,如图所示。

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
print(cancer.DESCR)

image

切分数据集

X = cancer.data
y = cancer.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state

模型训练与评估

逻辑回归算法使用sklearn.linear_model 模块中的LogisticRegression方法。常用的参数如下:

penalty:设置正则化项,其取值为'l1'或'l2',默认为'l2'。

C:正则化强度,C越大,权重越小。

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model.fit(X_train, y_train)
model.score(X_test, y_test)

# result
# 0.94736842105263153

我们换为L1范数:

model2 = LogisticRegression(penalty='l1')
   model2.fit(X_train, y_train)
   model2.score(X_test, y_test)

   # result
   # 0.95614035087719296

这里查看模型的参数,发现确实有很多特征的参数为0。

image

原文发布时间为:2018-07-04
本文作者:罗罗攀
本文来自云栖社区合作伙伴“Python爱好者社区”,了解相关信息可以关注“Python爱好者社区

相关文章
|
2天前
|
数据采集 人工智能 安全
|
11天前
|
云安全 监控 安全
|
3天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
1017 151
|
3天前
|
编解码 人工智能 机器人
通义万相2.6,模型使用指南
智能分镜 | 多镜头叙事 | 支持15秒视频生成 | 高品质声音生成 | 多人稳定对话
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1711 9
|
8天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
654 152
|
10天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
620 12
|
10天前
|
人工智能 自然语言处理 API
Next AI Draw.io:当AI遇见Draw.io图表绘制
Next AI Draw.io 是一款融合AI与图表绘制的开源工具,基于Next.js实现,支持自然语言生成架构图、流程图等专业图表。集成多款主流大模型,提供智能绘图、图像识别优化、版本管理等功能,部署简单,安全可控,助力技术文档与系统设计高效创作。
690 151