【Java小工匠聊密码学】--消息摘要--MD算法

简介: 1、MD算法的基的概念   MD5算法是典型的消息摘要算法,其前身有MD2、MD3和MD4算法,它由MD4、MD3和MD2算法改进而来。不论是哪一种MD算法,它们都需 要获得一个随机长度的信息并产生一个128位的信息摘要。

1、MD算法的基的概念

   MD5算法是典型的消息摘要算法,其前身有MD2、MD3和MD4算法,它由MD4、MD3和MD2算法改进而来。不论是哪一种MD算法,它们都需 要获得一个随机长度的信息并产生一个128位的信息摘要。如果将这个128位的二进制摘要信息换算成十六进制,可以得到一个32位的字符串,故我们见到的 大部分MD5算法的数字指纹都是32为十六进制的字符串。

2、MD算法的发展史

2.1 MD2算法

   1989年,著名的非对称算法RSA发明人之一----麻省理工学院教授罗纳德.李维斯特开发了MD2算法。这个算法首先对信息进行数据补位,使信 息的字节长度是16的倍数。再以一个16位的检验和做为补充信息追加到原信息的末尾。最后根据这个新产生的信息计算出一个128位的散列值,MD2算法由 此诞生。

2.2 MD4算法

   1990年,罗纳德.李维斯特教授开发出较之MD2算法有着更高安全性的MD4算法。在这个算法中,我们仍需对信息进行数据补位。不同的是,这种补 位使其信息的字节长度加上448个字节后成为512的倍数(信息字节长度mod 512 =448)。此外,关于MD4算的处理和MD2算法有很大的差别。但最终仍旧会获得一个128为的散列值。MD4算法对后续消息摘要算法起到了推动作用, 许多比较有名的消息摘要算法都是在MD4算法的基础上发展而来的,如MD5、SHA-1、RIPE-MD和HAVAL算法等。

2.3 MD5算法

   1991年,继MD4算法后,罗纳德.李维斯特教授开发了MD5算法,将MD算法推向成熟。MD5算法经MD2、MD3和MD4算法发展而来,算法复杂程度和安全强度打打提高,但浙西MD算法的最终结果都是产生一个128位的信息摘要。这也是MD系列算法的特点。MD5算法的算法特点如下:
(1)压缩性:任意长度的数据,算出的MD5值长度都是固定的。
(2)容易计算:从原数据计算出MD5值很容易。
(3)抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。
(4)弱抗碰撞:已知原数据和其MD5值,想找到一个具有相同MD5值的数据(即伪造数据)是非常困难的。
(5)强抗碰撞:想找到两个不同的数据,使它们具有相同的MD5值,是非常困难的。

2.4、MD5破解方面

   在破解md5方面,最常用的方法是“跑字典”,有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用MD5程序计算出这些字典项的MD5值,然后再用目标的MD5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 Bytes),同时密码只能是字母和数字,共26+26+10=62个字节,排列组合出的字典的项数则是P(62,1)+P(62,2)….+P(62,8),那也已经是一个很天文的数字了,存储这个字典就需要TB级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码MD5值的情况下才可以。

所以总体而言,md5加密是十分安全的,即使有一些瑕疵,但并不影响具体的使用,外加md5是免费的,所以它的应用还是十分广泛的。

3、MD5算法应用

3.1、Md5 密码存储加盐

    MD5算法,可以用来保存用户的密码信息。为了更好的保存,可以在保存的过程中,加入盐。/在保存用户密码的时候,盐可以利用生成的随机数。可以将密码结合MD5加盐,生成的数据摘要和盐保存起来 。以便于下次用户验证使用。在用户表里面,也保存salt。

3.2、Md5 文件完整性校验

    每个文件都可以用MD5验证程序算出一个固定的MD5值,是独一无二的。一般来说,开发方会在软件发布时预先算出文件的MD5值,如果文件被盗用,加了木马或者被篡改版权,那么它的MD5值也随之改变,也就是说我们对比文件当前的MD5值和它标准的MD5值来检验它是否正确和完整。
(1)例如网盘中的秒传4G文件,可以使用用户需要上传的文件进行Md5运算,判断与服务器中是否存在该文件,如果存在只需添加文件索引,不存在再真正上传。
(2)例如自动升级的客户端,判断下载的程序安装包是否完整,可以计算文件的MD5值,与服务器端计算的Md5值进行比对。

4、MD5算法实现

4.1 JDK算法实现

package lzf.cipher.jdk;

import java.nio.charset.Charset;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

/**
 * @author Java小工匠
 */
public class JdkMd5Utils {

    public static final Charset UTF8 = Charset.forName("UTF-8");
    public static final int SI = 8;
    public static final int EI = 24;

    // MD5 小写16位
    public static String md5L16(String str) {
        return md5L32(str.getBytes(UTF8)).substring(SI, EI);
    }

    // MD5 大写16位
    public static String md5U16(String str) {
        return md5U32(str.getBytes(UTF8)).substring(SI, EI);
    }

    // MD5 小写16位
    public static String md5L16(byte[] bytes) {
        return md5L32(bytes).substring(SI, EI);
    }

    // MD5 大写16位
    public static String md5U16(byte[] bytes) {
        return md5U32(bytes).substring(SI, EI);
    }

    // =========================================================
    // 默认Md5算法
    public static String md5(String str) {
        return md5U32(str);
    }

    // 默认Md5算法
    public static String md5(byte[] bytes) {
        return md5U32(bytes);
    }

    // MD5 小写32位
    public static String md5L32(String str) {
        return md5L32(str.getBytes(UTF8));
    }

    // MD5 小写32位
    public static String md5L32(byte[] bytes) {
        try {
            // 1、获得MD5摘要算法的 MessageDigest 对象
            MessageDigest digest = MessageDigest.getInstance("md5");
            // 2、使用指定的字节更新摘要
            digest.update(bytes);
            // 3、获得密文
            byte[] rsBytes = digest.digest();
            // 4、把密文转换成十六进制的字符串形式
            return encodeHex(rsBytes, true);
        } catch (NoSuchAlgorithmException e) {
            throw new RuntimeException(e.getMessage(), e);
        }
    }

    // MD5 大写32位
    public static String md5U32(String str) {
        return md5U32(str.getBytes(UTF8));
    }

    // MD5 大写32位
    public static String md5U32(byte[] bytes) {
        try {
            MessageDigest digest = MessageDigest.getInstance("md5");
            digest.update(bytes);
            byte[] rsBytes = digest.digest();
            return encodeHex(rsBytes, false);
        } catch (NoSuchAlgorithmException e) {
            throw new RuntimeException(e.getMessage(), e);
        }
    }

    // 字节数组转16 进制
    // 数据准16进制编码
    public static String encodeHex(final byte[] data) {
        return encodeHex(data, true);
    }

    // 数据转16进制编码
    public static String encodeHex(final byte[] data, final boolean toLowerCase) {
        final char[] DIGITS_LOWER = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
        final char[] DIGITS_UPPER = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
        final char[] toDigits = toLowerCase ? DIGITS_LOWER : DIGITS_UPPER;
        final int l = data.length;
        final char[] out = new char[l << 1];
        // two characters form the hex value.
        for (int i = 0, j = 0; i < l; i++) {
            out[j++] = toDigits[(0xF0 & data[i]) >>> 4];
            out[j++] = toDigits[0x0F & data[i]];
        }
        return new String(out);
    }

    public static void main(String[] args) {
        String str = "Java小工匠";
        String low16 = md5L16(str);
        String upper16 = md5U16(str);
        String low32 = md5L32(str);
        String upper32 = md5U32(str);
        System.out.println("16位小写:" + low16);
        System.out.println("16位大写:" + upper16);
        System.out.println("32位小写:" + low32);
        System.out.println("32位大写:" + upper32);
    }
}

4.2 CC 算法实现

package lzf.cipher.cc;

import java.nio.charset.Charset;

import org.apache.commons.codec.digest.DigestUtils;

/**
 * @author Java小工匠
 */
public class CCMd5Utils {

    public static final Charset UTF8 = Charset.forName("UTF-8");
    public static final int SI = 8;
    public static final int EI = 24;

    // MD5 小写16位
    public static String md5L16(String str) {
        return md5L32(str.getBytes(UTF8)).substring(SI, EI);
    }

    // MD5 大写16位
    public static String md5U16(String str) {
        return md5U32(str.getBytes(UTF8)).substring(SI, EI);
    }

    // MD5 小写16位
    public static String md5L16(byte[] bytes) {
        return md5L32(bytes).substring(SI, EI);
    }

    // MD5 大写16位
    public static String md5U16(byte[] bytes) {
        return md5U32(bytes).substring(SI, EI);
    }

    // =========================================================
    // 默认Md5算法
    public static String md5(String str) {
        return md5U32(str);
    }

    // 默认Md5算法
    public static String md5(byte[] bytes) {
        return md5U32(bytes);
    }

    // MD5 小写32位
    public static String md5L32(String str) {
        return md5L32(str.getBytes(UTF8));
    }

    // MD5 小写32位
    public static String md5L32(byte[] bytes) {
        return DigestUtils.md5Hex(bytes);
    }

    // MD5 大写32位
    public static String md5U32(String str) {
        return md5U32(str.getBytes(UTF8));
    }

    // MD5 大写32位
    public static String md5U32(byte[] bytes) {
        return DigestUtils.md5Hex(bytes).toUpperCase();
    }

    public static void main(String[] args) {
        String str = "Java小工匠";
        String low16 = md5L16(str);
        String upper16 = md5U16(str);
        String low32 = md5L32(str);
        String upper32 = md5U32(str);
        System.out.println("16位小写:" + low16);
        System.out.println("16位大写:" + upper16);
        System.out.println("32位小写:" + low32);
        System.out.println("32位大写:" + upper32);
    }
}

4.2 BC 算法实现

package lzf.cipher.bc;

import java.nio.charset.Charset;

import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.digests.MD5Digest;
import org.bouncycastle.util.encoders.Hex;

/**
 * @author Java小工匠
 */
public class BCMd5Utils {

    public static final Charset UTF8 = Charset.forName("UTF-8");
    public static final int SI = 8;
    public static final int EI = 24;

    // MD5 小写16位
    public static String md5L16(String str) {
        return md5L32(str.getBytes(UTF8)).substring(SI, EI);
    }

    // MD5 大写16位
    public static String md5U16(String str) {
        return md5U32(str.getBytes(UTF8)).substring(SI, EI);
    }

    // MD5 小写16位
    public static String md5L16(byte[] bytes) {
        return md5L32(bytes).substring(SI, EI);
    }

    // MD5 大写16位
    public static String md5U16(byte[] bytes) {
        return md5U32(bytes).substring(SI, EI);
    }

    // =========================================================
    // 默认Md5算法
    public static String md5(String str) {
        return md5U32(str);
    }

    // 默认Md5算法
    public static String md5(byte[] bytes) {
        return md5U32(bytes);
    }

    // MD5 小写32位
    public static String md5L32(String str) {
        return md5L32(str.getBytes(UTF8));
    }

    // MD5 小写32位
    public static String md5L32(byte[] data) {
        Digest digest = new MD5Digest();
        digest.update(data, 0, data.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // MD5 大写32位
    public static String md5U32(String str) {
        return md5U32(str.getBytes(UTF8));
    }

    // MD5 大写32位
    public static String md5U32(byte[] bytes) {
        return md5L32(bytes).toUpperCase();
    }

    // MD4 算法
    public static String md4(byte[] data) {
        Digest digest = new MD5Digest();
        digest.update(data, 0, data.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(data);
    }

    public static void main(String[] args) {
        String str = "Java小工匠";
        String low16 = md5L16(str);
        String upper16 = md5U16(str);
        String low32 = md5L32(str);
        String upper32 = md5U32(str);
        String md4 = md4(str.getBytes());
        System.out.println("16位小写:" + low16);
        System.out.println("16位大写:" + upper16);
        System.out.println("32位小写:" + low32);
        System.out.println("32位大写:" + upper32);
        System.out.println("md4:" + md4);
    }
}


如果读完觉得有收获的话,欢迎点赞、关注、加公众号【小工匠技术圈】

个人公众号,欢迎关注,查阅更多精彩历史!

image
相关文章
|
1月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
1月前
|
搜索推荐 算法 Java
手写快排:教你用Java写出高效排序算法!
快速排序(QuickSort)是经典的排序算法之一,基于分治思想,平均时间复杂度为O(n log n),广泛应用于各种场合。在这篇文章中,我们将手写一个Java版本的快速排序,从基础实现到优化策略,并逐步解析代码背后的逻辑。
44 1
|
22天前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
37 2
|
30天前
|
安全 算法 Java
java系列之~~网络通信安全 非对称加密算法的介绍说明
这篇文章介绍了非对称加密算法,包括其定义、加密解密过程、数字签名功能,以及与对称加密算法的比较,并解释了非对称加密在网络安全中的应用,特别是在公钥基础设施和信任网络中的重要性。
|
1月前
|
存储 算法 Java
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
46 2
|
1月前
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
37 1
|
1月前
|
数据采集 搜索推荐 算法
【高手进阶】Java排序算法:从零到精通——揭秘冒泡、快速、归并排序的原理与实战应用,让你的代码效率飙升!
【8月更文挑战第21天】Java排序算法是编程基础的重要部分,在算法设计与分析及实际开发中不可或缺。本文介绍内部排序算法,包括简单的冒泡排序及其逐步优化至高效的快速排序和稳定的归并排序,并提供了每种算法的Java实现示例。此外,还探讨了排序算法在电子商务、搜索引擎和数据分析等领域的广泛应用,帮助读者更好地理解和应用这些算法。
21 0
|
7天前
|
存储 缓存 安全
【Java面试题汇总】多线程、JUC、锁篇(2023版)
线程和进程的区别、CAS的ABA问题、AQS、哪些地方使用了CAS、怎么保证线程安全、线程同步方式、synchronized的用法及原理、Lock、volatile、线程的六个状态、ThreadLocal、线程通信方式、创建方式、两种创建线程池的方法、线程池设置合适的线程数、线程安全的集合?ConcurrentHashMap、JUC
【Java面试题汇总】多线程、JUC、锁篇(2023版)
|
1天前
|
缓存 Java 应用服务中间件
Java虚拟线程探究与性能解析
本文主要介绍了阿里云在Java-虚拟-线程任务中的新进展和技术细节。
|
17天前
|
监控 Java 调度
【Java学习】多线程&JUC万字超详解
本文详细介绍了多线程的概念和三种实现方式,还有一些常见的成员方法,CPU的调动方式,多线程的生命周期,还有线程安全问题,锁和死锁的概念,以及等待唤醒机制,阻塞队列,多线程的六种状态,线程池等
79 6
【Java学习】多线程&JUC万字超详解