【Java小工匠聊密码学】--消息摘要--SHA算法

简介: 1、什么是SHA算法  安全散列算法(英语:Secure Hash Algorithm,缩写为SHA)是一个密码散列函数家族,是联邦信息处理标准(Federal Information Processing Standards,FIPS)所认证的安全散列算法。

1、什么是SHA算法

  安全散列算法(英语:Secure Hash Algorithm,缩写为SHA)是一个密码散列函数家族,是联邦信息处理标准(Federal Information Processing Standards,FIPS)所认证的安全散列算法。能计算出一个数字消息所对应到的,长度固定的字符串(又称消息摘要)的算法。且若输入的消息不同,它们对应到不同字符串的机率很高。

2、SHA算法发展史

2.1 SHA-0

SHA由美国标准与技术研究所(NIST)设计并于1993年发表,该版本称为SHA-0,很快被发现存在安全隐患。

2.2 SHA-1

由于SHA-0中存在的安全隐患,SHA由美国标准与技术研究所(NIST)设计并于1995年发表SHA-1,2005年 SHA-1 算法被破解。
SHA-1在许多安全协议中广为使用,包括TLS和SSL、PGP、SSH、S/MIME和IPsec,曾被视为是MD5(更早之前被广为使用的散列函数)的后继者。
但SHA-1的安全性如今被密码学家严重质疑。

2.3 SHA-2

NIST在2002年发布了三个额外的SHA变体,这三个函数都将讯息对应到更长的讯息摘要。以它们的摘要长度(以位元计算)加在原名后面来命名:SHA-256,SHA-384和SHA-512。2004年2月加入了一个额外的变种SHA-224",这是为了符合双金钥3DES所需的金钥长度而定义。
至今尚未出现对SHA-2有效的攻击。

3、 SHA 算法对比

image.png

4、SHA 算法实现

4.1 JDK 实现

package lzf.cipher.jdk;

import java.nio.charset.Charset;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

/**
 * @author Java 小工匠
 */
public class JdkShaUtils {

    // SHA 与 SHA-1 算法等价
    public static String sha(byte[] bytes) {
        return shaBase("SHA", bytes);
    }

    // SHA-1 算法
    public static String sha1(byte[] bytes) {
        return shaBase("SHA-1", bytes);
    }

    // SHA-256 算法
    public static String sha256(byte[] bytes) {
        return shaBase("SHA-256", bytes);
    }

    // SHA-384 算法
    public static String sha384(byte[] bytes) {
        return shaBase("SHA-384", bytes);
    }

    // SHA-521 算法
    public static String sha512(byte[] bytes) {
        return shaBase("SHA-512", bytes);
    }

    // SHA基础算法
    public static String shaBase(String sha, byte[] bytes) {
        try {
            // 1、获得SHA摘要算法的 MessageDigest 对象
            MessageDigest digest = MessageDigest.getInstance(sha);
            // 2、使用指定的字节更新摘要
            digest.update(bytes);
            // 3、获得密文
            byte[] rsBytes = digest.digest();
            // 4、把密文转换成十六进制的字符串形式
            return encodeHex(rsBytes);
        } catch (NoSuchAlgorithmException e) {
            throw new RuntimeException(e.getMessage(), e);
        }
    }

    // 数据准16进制编码
    public static String encodeHex(final byte[] data) {
        return encodeHex(data, true);
    }

    // 数据转16进制编码
    public static String encodeHex(final byte[] data, final boolean toLowerCase) {
        final char[] DIGITS_LOWER = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
        final char[] DIGITS_UPPER = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
        final char[] toDigits = toLowerCase ? DIGITS_LOWER : DIGITS_UPPER;
        final int l = data.length;
        final char[] out = new char[l << 1];
        // two characters form the hex value.
        for (int i = 0, j = 0; i < l; i++) {
            out[j++] = toDigits[(0xF0 & data[i]) >>> 4];
            out[j++] = toDigits[0x0F & data[i]];
        }
        return new String(out);
    }

    public static void main(String[] args) {
        byte[] bytes = "java小工匠".getBytes(Charset.forName("UTF-8"));
        String sha = sha(bytes);
        System.out.println("   sha:" + sha + ",lengh=" + sha.length());
        String sha1 = sha1(bytes);
        System.out.println("  sha1:" + sha1 + ",lengh=" + sha1.length());
        String sha256 = sha256(bytes);
        System.out.println("sha256:" + sha256 + ",lengh=" + sha256.length());
        String sha384 = sha384(bytes);
        System.out.println("sha384:" + sha384 + ",lengh=" + sha384.length());
        String sha512 = sha512(bytes);
        System.out.println("sha512:" + sha512 + ",lengh=" + sha512.length());
    }
}

4.2 CC实现

package lzf.cipher.cc;

import java.nio.charset.Charset;

import org.apache.commons.codec.digest.DigestUtils;

/**
 * @author Java 小工匠
 */
public class CCShaUtils {

    // SHA 与 SHA-1 算法等价
    public static String sha(byte[] bytes) {
        return DigestUtils.sha1Hex(bytes);
    }

    // SHA-1 算法
    public static String sha1(byte[] bytes) {
        return DigestUtils.sha1Hex(bytes);
    }

    // SHA-256 算法
    public static String sha256(byte[] bytes) {
        return DigestUtils.sha256Hex(bytes);
    }

    // SHA-384 算法
    public static String sha384(byte[] bytes) {
        return DigestUtils.sha384Hex(bytes);
    }

    // SHA-521 算法
    public static String sha512(byte[] bytes) {
        return DigestUtils.sha512Hex(bytes);
    }

    public static void main(String[] args) {
        byte[] bytes = "java小工匠".getBytes(Charset.forName("UTF-8"));
        String sha = sha(bytes);
        System.out.println("   sha:" + sha + ",lengh=" + sha.length());
        String sha1 = sha1(bytes);
        System.out.println("  sha1:" + sha1 + ",lengh=" + sha1.length());
        String sha256 = sha256(bytes);
        System.out.println("sha256:" + sha256 + ",lengh=" + sha256.length());
        String sha384 = sha384(bytes);
        System.out.println("sha384:" + sha384 + ",lengh=" + sha384.length());
        String sha512 = sha512(bytes);
        System.out.println("sha512:" + sha512 + ",lengh=" + sha512.length());
    }
}

4.3 BC实现

package lzf.cipher.bc;

import java.nio.charset.Charset;

import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.digests.SHA1Digest;
import org.bouncycastle.crypto.digests.SHA256Digest;
import org.bouncycastle.crypto.digests.SHA384Digest;
import org.bouncycastle.crypto.digests.SHA512Digest;
import org.bouncycastle.util.encoders.Hex;

/**
 * @author Java 小工匠
 */
public class BCShaUtils {

    // SHA-1 算法
    public static String sha1(byte[] bytes) {
        Digest digest = new SHA1Digest();
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);

    }

    // SHA-256 算法
    public static String sha256(byte[] bytes) {
        Digest digest = new SHA256Digest();
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHA-384 算法
    public static String sha384(byte[] bytes) {
        Digest digest = new SHA384Digest();
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHA-521 算法
    public static String sha512(byte[] bytes) {
        Digest digest = new SHA512Digest();
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    public static void main(String[] args) {
        byte[] bytes = "java小工匠".getBytes(Charset.forName("UTF-8"));
        String sha1 = sha1(bytes);
        System.out.println("  sha1:" + sha1 + ",lengh=" + sha1.length());
        String sha256 = sha256(bytes);
        System.out.println("sha256:" + sha256 + ",lengh=" + sha256.length());
        String sha384 = sha384(bytes);
        System.out.println("sha384:" + sha384 + ",lengh=" + sha384.length());
        String sha512 = sha512(bytes);
        System.out.println("sha512:" + sha512 + ",lengh=" + sha512.length());
    }
}

如果读完觉得有收获的话,欢迎点赞、关注、加公众号【小工匠技术圈】

个人公众号,欢迎关注,查阅更多精彩历史!

image
相关文章
|
1月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
1月前
|
搜索推荐 算法 Java
手写快排:教你用Java写出高效排序算法!
快速排序(QuickSort)是经典的排序算法之一,基于分治思想,平均时间复杂度为O(n log n),广泛应用于各种场合。在这篇文章中,我们将手写一个Java版本的快速排序,从基础实现到优化策略,并逐步解析代码背后的逻辑。
44 1
|
22天前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
37 2
|
30天前
|
安全 算法 Java
java系列之~~网络通信安全 非对称加密算法的介绍说明
这篇文章介绍了非对称加密算法,包括其定义、加密解密过程、数字签名功能,以及与对称加密算法的比较,并解释了非对称加密在网络安全中的应用,特别是在公钥基础设施和信任网络中的重要性。
|
1月前
|
搜索推荐 算法 Java
经典排序算法之-----选择排序(Java实现)
这篇文章通过Java代码示例详细解释了选择排序算法的实现过程,包括算法的基本思想、核心代码、辅助函数以及测试结果,展示了如何通过选择排序对数组进行升序排列。
经典排序算法之-----选择排序(Java实现)
|
1月前
|
搜索推荐 算法 Java
|
1月前
|
算法 JavaScript 前端开发
消息摘要算法:MD5加密
消息摘要算法:MD5加密
41 1
|
1月前
|
数据采集 搜索推荐 算法
【高手进阶】Java排序算法:从零到精通——揭秘冒泡、快速、归并排序的原理与实战应用,让你的代码效率飙升!
【8月更文挑战第21天】Java排序算法是编程基础的重要部分,在算法设计与分析及实际开发中不可或缺。本文介绍内部排序算法,包括简单的冒泡排序及其逐步优化至高效的快速排序和稳定的归并排序,并提供了每种算法的Java实现示例。此外,还探讨了排序算法在电子商务、搜索引擎和数据分析等领域的广泛应用,帮助读者更好地理解和应用这些算法。
21 0
|
1月前
|
算法 Java
HanLP — HMM隐马尔可夫模型 -- 维特比(Viterbi)算法 --示例代码 - Java
HanLP — HMM隐马尔可夫模型 -- 维特比(Viterbi)算法 --示例代码 - Java
29 0
|
1月前
|
搜索推荐 算法 Java
插入排序算法(Java代码实现)
这篇文章通过Java代码示例详细解释了插入排序算法的实现过程,包括算法的基本思想、核心代码、辅助函数以及测试结果,展示了如何通过插入排序对数组进行升序排列。