MySQL分布式集群

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:

一、什么是MySQL集群
MySQL集群是一个无共享的(shared-nothing)、分布式节点架构的存储方案,其目的是提供容错性和高性能。
数据更新使用读已提交隔离级别(read-committedisolation)来保证所有节点数据的一致性,使用两阶段提交机制(two-phasedcommit)保证所有节点都有相同的数据(如果任何一个写操作失败,则更新失败)。
无共享的对等节点使得某台服务器上的更新操作在其他服务器上立即可见。传播更新使用一种复杂的通信机制,这一机制专用来提供跨网络的高吞吐量。
通过多个MySQL服务器分配负载,从而最大程序地达到高性能,通过在不同位置存储数据保证高可用性和冗余。

二、架构图

image

三、如何存储数据

1.Mysqlcluster数据节点组内主从同步采用的是同步复制,来保证组内节点数据的一致性。一般通过两阶段提交 协议来实现,一般工作过程如下:
a)Master执行提交语句时,事务被发送到slave,slave开始准备事务的提交。
b)每个slave都要准备事务,然后向master发送OK(或ABORT)消息,表明事务已经准备好(或者无法准备该事务)。
c)Master等待所有Slave发送OK或ABORT消息

  如果Master收到所有 Slave的OK消息,它就会向所有Slave发送提交消息,告诉Slave提交该事务;
  如果Master收到来自任何一个Slave的ABORT消息,它就向所有 Slave发送ABORT消息,告诉Slave去中止事务。

e)每个Slave等待来自Master的OK或ABORT消息。

     如果Slave收到提交请求,它们就会提交事务,并向Master发送事务已提交 的确认;
     如果Slave收到取消请求,它们就会撤销所有改变并释放所占有的资源,从而中止事务,然后向Masterv送事务已中止的确认。

f) 当Master收到来自所有Slave的确认后,就会报告该事务被提交(或中止),然后继续进行下一个事务处理。
由于同步复制一共需要4次消息传递,故mysql cluster的数据更新速度比单机mysql要慢。所以mysql cluster要求运行在千兆以上的局域网内,节点可以采用双网卡,节点组之间采用直连方式。

疑问: 对cluster进行扩容增加数据节点组时会不 会导致数据更新速度降低?
答:不会,数据更新速度会变快。因为数据是分别处理,每个节点组所保存的数据是不一样的,
也能减少锁定。
2.Mysqlcluster将所有的索引列都保存在主存中,其他非索引列可以存储在内存中或者通过建立表空间存储到磁盘上。如果数据发生改变(insert,update,delete等),mysql 集群将发生改变的记录写入重做日志,然后通过检查点定期将数据定入磁盘。由于重做日志是异步提交的,所以故障期间可能有少量事务丢失。为了减少事务丢失,mysql集群实现延迟写入(默认延迟两秒,可配置),这样就可以在故障发生时完成检查点写入,而不会丢失最后一个检查点。一般单个数据节点故障不会导致任何数据丢失,因为集群内部采用同步数据复制。
四、MySQL集群的横向扩展

1.添加数据节点组来扩展写操作,提高 cluster的存储能力。支持在线扩容,先将新的节点加入到clsuter里,启动后用
ALTER ONLINE TABLE table_name REORGANIZE PARTITION
命令进行数据迁移,把数据平均分配到数据节点上。
2.添加Slave仅仅扩展读,而不能做到写操作的横向扩展。
整个系统的平均负载可以描述为:
AverageLoad=∑readload+ ∑writeload / ∑capacity
假设每个服务器每秒有10000的事务量,而Master每秒的写负载为4000个事务,每秒的读负载为6000,结果就是:
AverageLoad=6000+4000/10000=100%
现在,添加3个slave,每秒的事务量增加到40000。因为写操作也会被复制,每个写操作执行4次,这样每个slave的写负载就是每秒4000个事务。那么现在的平均负载为:
AverageLoad=6000+44000/ 410000=55%
五、MySQL集群的优缺点

优点:
a) 99.999%的高可用性
b)快速的自动失效切换
c)灵活的分布式体系结构,没有单点故障
d)高吞吐量和低延迟
e)可扩展性强,支持在线扩容
缺点:
a)存在很多限制,比如:不支持外键
b)部署、管理、配置很复杂
c)占用磁盘空间大,内存大
d)备份和恢复不方便
e)重启的时候,数据节点将数据load到内存需要很长时间

集群搭建实现步骤

集群 mysql cluster
高可用 负载均衡
集群成员:
====管理节点(MGM) 进程名 ndb_mgmd
====数据节点(Data Nodes) 进程名 ndbd
====SQL节点(Sql Nodes) 进程名 mysqld

拓扑:
192.168.1.3 管理节点 mgm
192.168.1.4 192.168.1.5 SQL节点 sql1 sql2
192.168.1.6 192.168.1.7 数据节点 data1 data2

配置:
所有节点操作
1.创建mysql用户

[root@mgm ~]# useradd mysql

2.解压软件包
[root@mgm tmp]# tar xf mysql-cluster-gpl-7.4.12-linux-glibc2.5-x86_64.tar.gz
3.将软件包剪切并改名
[root@mgm tmp]# mv mysql-cluster-gpl-7.4.12-linux-glibc2.5-x86_64 /usr/local/mysql-cluster
4.修改权限

[root@mgm tmp]# chown mysql.mysql /usr/local/mysql-cluster -R

管理节点:

[root@mgm tmp]# mkdir /usr/local/mysql-cluster/cluster-conf
[root@mgm tmp]# vim /usr/local/mysql-cluster/cluster-conf/config.ini

[ndbd default]
NoOfReplicas=2
DataMemory=80M
IndexMemory=18M

[ndb_mgmd]
id=1
hostname=192.168.1.3
datadir=/usr/local/mysql-cluster/data

[ndbd]
id=2
hostname=192.168.1.6
datadir=/usr/local/mysql-cluster/ndbdata

[ndbd]
id=3
hostname=192.168.1.7
datadir=/usr/local/mysql-cluster/ndbdata

[mysqld]
id=4
hostname=192.168.1.4

[mysqld]
id=5
hostname=192.168.1.5

sql节点配置:

# vim /etc/my.cnf

[mysqld]
ndbcluster
ndb-connectstring=192.168.1.3

[mysql_cluster]
ndb-connectstring=192.168.1.3

data节点配置:

# mkdir /usr/local/mysql-cluster/ndbdata 
# vim /etc/my.cnf

[mysqld]
datadir=/usr/local/mysql-cluster/ndbdata
ndbcluster
ndb-connectstring=192.168.1.3

[mysql_cluster]
ndb-connectstring=192.168.1.3

初始化sql节点:

# cd /usr/local/mysql-cluster
# ./scripts/mysql_install_db --user=mysql

启动manager节点:(启动前把mysqld服务关闭)

# cd /usr/local/mysql-cluster
# ./bin/ndb_mgmd -f cluster-conf/config.ini

启动数据节点:

# cd /usr/local/mysql-cluster
# ./bin/ndbd

启动sql节点:

# cd /usr/local/mysql-cluster
# ./bin/mysqld_safe --user=mysql &

管理节点:

 # ./bin/ndb_mgm -e show \\检查集群的状态
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
48 3
|
1月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
40 0
|
13天前
|
存储 分布式计算 负载均衡
分布式计算模型和集群计算模型的区别
【10月更文挑战第18天】分布式计算模型和集群计算模型各有特点和优势,在实际应用中需要根据具体的需求和条件选择合适的计算架构模式,以达到最佳的计算效果和性能。
36 2
|
9天前
|
存储 监控 大数据
构建高可用性ClickHouse集群:从单节点到分布式
【10月更文挑战第26天】随着业务的不断增长,单一的数据存储解决方案可能无法满足日益增加的数据处理需求。在大数据时代,数据库的性能、可扩展性和稳定性成为企业关注的重点。ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS),以其卓越的查询性能和高吞吐量而闻名。本文将从我的个人角度出发,分享如何将单节点 ClickHouse 扩展为高可用性的分布式集群,以提升系统的稳定性和可靠性。
26 0
|
1月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
43 1
|
1月前
|
分布式计算 Hadoop 网络安全
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
28 1
|
1月前
|
存储 机器学习/深度学习 缓存
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
40 1
|
1月前
|
分布式计算 资源调度 Hadoop
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
44 1
|
1月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
45 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
79 0
下一篇
无影云桌面