NLPIR语义分词技术给自然语言处理带来新驱动

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: NLPIR能够全方位多角度满足应用者对大数据文本的处理需求,包括大数据完整的技术链条:网络采集、正文提取、中英文分词、词性标注、实体抽取、词频统计、关键词提取、语义信息抽取、文本分类、情感分析、语义深度扩展、繁简编码转换、自动注音、文本聚类等。

  随着信息的快速速增长,让搜索引擎成了人们查找信息的首要工具。如今在中文搜索引擎领域,国内搜索引擎已经同国外搜索引擎效果上相差不大了。能形成现在这样的局面,是有一个重要的原因:英文和中文两种语言自身的书写方式不相同,其中在计算机涉及的技术就是中文分词技术。
  分词技术发展至今,也已经有十几年的历史。目前在中文分词领域,已经有很多成熟的分词技术。中文是由连续文字组成,缺乏有效的间隔,虽然有句、段分隔,但在进行机器语言学习、文本语义理解分析过程中都需以词组为最小单位的。因此实现中文分词相对英语来讲,更加的复杂、困难。这其中对于计算机涉及的技术就是中文分词技术。
  中文分词不仅是各种中文信息处理技术中使用最广泛的手段,也是信息检索和搜索引擎必不可少的基础性工作。现有的中文分词方法有很多,它们以字符串匹配、统计模型、理解、路径以及语义等为基础,并辅以分词词典和规则库,能够在一定程度上对中文信息进行切分。但由于汉语本身的特殊性和复杂性,目前的中文分词技术普遍存在歧义词处理和未登录词(新词)识别两个难点。因此,一个好的中文分词方法不仅需要具备高效的分词算法和词典机制,而且要准确识别歧义词和未登录词。
  灵玖软件NLPIR大语义智能分析平台针对中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,先后历时十八年,服务了全球四十万家机构用户,是大时代语义智能分析的一大利器。
  NLPIR大语义智能分析平台平台针对互联网内容处理的需要,融合了自然语言理解、网络搜索和文本挖掘的技术,提供了用于技术二次开发的基础工具集。开发平台由多个中间件组成,各个中间件API可以无缝地融合到客户的各类复杂应用系统之中,可兼容Windows,Linux, Android,Maemo5, FreeBSD等不同操作系统平台,可以供Java,C,C#等各类开发语言使用。
  NLPIR能够全方位多角度满足应用者对大数据文本的处理需求,包括大数据完整的技术链条:网络采集、正文提取、中英文分词、词性标注、实体抽取、词频统计、关键词提取、语义信息抽取、文本分类、情感分析、语义深度扩展、繁简编码转换、自动注音、文本聚类等。
  目前利用文本挖掘技术的多是一些信息收集机构,这是由于在信息行业中,文本信息都起着至关重要的作用,文本挖掘技术是采取任何技术的出发点,直接影响各工作流程的质量、效率、全面性和费用-效益比,并与最终产品息息相关。
  随着信息技术在我国社会生活各个领域应用的深入,中文信息处理正在成为人们工作和生活中不可或缺的手段,中文信息处理将具有更加广阔的市场。NLPIR大语义智能中文信息处理技术已成为中文信息技术研究、发展、应用和产业的提供了重要的帮助,在互联网日益成长的今天,NLPIR大语义智能中文信息处理技术将会更加成熟并创新。

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
21天前
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller
|
14天前
|
人工智能 自然语言处理 PyTorch
AutoVFX:自然语言驱动的视频特效编辑框架
AutoVFX是一个先进的自然语言驱动的视频特效编辑框架,由伊利诺伊大学香槟分校的研究团队开发。该框架能够根据自然语言指令自动创建真实感和动态的视觉特效(VFX)视频,集成了神经场景建模、基于大型语言模型(LLM)的代码生成和物理模拟技术。本文详细介绍了AutoVFX的主要功能、技术原理以及如何运行该框架。
30 1
AutoVFX:自然语言驱动的视频特效编辑框架
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
随着人工智能技术的不断发展,自然语言处理(NLP)已经成为了一个重要的应用领域。本文将介绍一些常见的NLP任务和算法,并通过代码示例来展示如何实现这些任务。我们将讨论文本分类、情感分析、命名实体识别等常见任务,并使用Python和相关库来实现这些任务。最后,我们将探讨NLP在未来的发展趋势和挑战。
|
25天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的自然语言处理技术
【10月更文挑战第38天】在本文中,我们将深入探讨自然语言处理(NLP)技术及其在机器学习领域的应用。通过浅显易懂的语言和生动的比喻,我们将揭示NLP技术的奥秘,包括其工作原理、主要任务以及面临的挑战。此外,我们还将分享一些实用的代码示例,帮助您更好地理解和掌握这一技术。无论您是初学者还是有经验的开发者,相信您都能从本文中获得宝贵的知识和启示。
28 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度探索人工智能中的自然语言处理技术#### 一、
【10月更文挑战第28天】 本文旨在深入剖析人工智能领域中的自然语言处理(NLP)技术,探讨其发展历程、核心算法、应用现状及未来趋势。通过详尽的技术解读与实例分析,揭示NLP在智能交互、信息检索、内容理解等方面的变革性作用,为读者提供一幅NLP技术的全景图。 #### 二、
76 1
|
28天前
|
机器学习/深度学习 自然语言处理 算法
自然语言处理中的情感分析技术
自然语言处理中的情感分析技术
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理中的语义理解技术
自然语言处理中的语义理解技术
57 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【10月更文挑战第4天】本文将介绍人工智能(AI)在自然语言处理(NLP)领域的应用,包括语音识别、机器翻译、情感分析等方面。我们将通过一些实际案例展示AI如何帮助人们更好地理解和使用自然语言。同时,我们也会探讨AI在NLP领域面临的挑战和未来发展方向。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI技术在自然语言处理中的应用
【9月更文挑战第22天】本文将探讨AI技术在自然语言处理(NLP)领域的应用,包括文本挖掘、情感分析、机器翻译等方面。我们将通过实例和代码示例,展示如何使用Python和相关库实现这些功能。