Pandas数据规整

简介: Pandas数据规整数据分析和建模方面的大量编程工作都是用在数据准备上的,有时候存放在文件或数据库中的数据并不能满足数据处理应用的要求Pandas提供了一组高级的、灵活的、高效的核心函数和算法,它们能够轻松地将数据规...

Pandas数据规整

数据分析和建模方面的大量编程工作都是用在数据准备上的,有时候存放在文件或数据库中的数据并不能满足数据处理应用的要求

Pandas提供了一组高级的、灵活的、高效的核心函数和算法,它们能够轻松地将数据规整化为你需要的形式


合并

连接

Pandas提供了大量方法,能轻松的对Series,DataFrame和Panel执行合并操作

连接pandas对象 .concat()

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randn(10, 4))
df.head()
0 1 2 3
0 0.231308 1.193636 -0.033288 0.826399
1 -0.421474 -0.618510 -1.266325 -0.439435
2 -0.279457 0.578144 1.131353 -0.639720
3 -1.197750 -0.446579 0.495728 0.900704
4 -0.638926 -0.233019 -1.106248 -0.762133
pieces = [df[:2], df[3:5], df[7:]] # 这里面切片是前闭后开的
pieces
[          0         1         2         3
 0  0.231308  1.193636 -0.033288  0.826399
 1 -0.421474 -0.618510 -1.266325 -0.439435,
           0         1         2         3
 3 -1.197750 -0.446579  0.495728  0.900704
 4 -0.638926 -0.233019 -1.106248 -0.762133,
           0         1         2         3
 7 -0.265515 -0.705797  0.695531 -0.257374
 8  0.552615 -0.137180  0.859215 -0.853752
 9 -1.014105  0.392409 -1.832748  0.612679]
df2 = pd.concat(pieces)
df2
0 1 2 3
0 0.231308 1.193636 -0.033288 0.826399
1 -0.421474 -0.618510 -1.266325 -0.439435
3 -1.197750 -0.446579 0.495728 0.900704
4 -0.638926 -0.233019 -1.106248 -0.762133
7 -0.265515 -0.705797 0.695531 -0.257374
8 0.552615 -0.137180 0.859215 -0.853752
9 -1.014105 0.392409 -1.832748 0.612679

追加 .append()

df = pd.DataFrame(np.random.randn(4, 4), columns=['A','B','C','D'])
df
A B C D
0 1.295901 -0.742636 0.873728 -0.810075
1 1.073456 0.344627 0.156597 1.460616
2 1.696282 -1.272457 1.226460 -1.944458
3 -0.473047 0.147528 -0.538231 0.125467
s = df.iloc[2]
s
A    1.696282
B   -1.272457
C    1.226460
D   -1.944458
Name: 2, dtype: float64
df.append(s, ignore_index=True)
A B C D
0 1.295901 -0.742636 0.873728 -0.810075
1 1.073456 0.344627 0.156597 1.460616
2 1.696282 -1.272457 1.226460 -1.944458
3 -0.473047 0.147528 -0.538231 0.125467
4 1.696282 -1.272457 1.226460 -1.944458

分组

group by():一般指以下一个或多个操作步骤

  • Splitting 将数据分组
  • Applying 对每个分组应用不同的function
  • Combining 使用某种数据结果展示结果
df = pd.DataFrame({
    'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
    'B' : ['one', 'one', 'two', 'three','two', 'two', 'one', 'three'],
    'C' : np.random.randn(8),
    'D' : np.random.randn(8)
    })
df
A B C D
0 foo one 0.556699 1.543716
1 bar one -0.905349 -0.054870
2 foo two 1.220397 -0.589706
3 bar three 0.637305 -0.046351
4 foo two -0.150553 -0.889157
5 bar two -0.771132 0.196547
6 foo one 0.008275 -0.571672
7 foo three 0.228275 -1.164593
# 分组后sum求和:
a = df.groupby('A').sum()
a
C D
A
bar -1.039176 0.095325
foo 1.863094 -1.671411
a = df.groupby('A',as_index=False).sum()
a
A C D
0 bar -1.039176 0.095325
1 foo 1.863094 -1.671411
# 对多列分组后sum:
b = df.groupby(['A','B']).sum()
b
C D
A B
bar one -0.905349 -0.054870
three 0.637305 -0.046351
two -0.771132 0.196547
foo one 0.564975 0.972044
three 0.228275 -1.164593
two 1.069844 -1.478862
b = df.groupby(['A','B'],as_index=False).sum()
b
A B C D
0 bar one -0.905349 -0.054870
1 bar three 0.637305 -0.046351
2 bar two -0.771132 0.196547
3 foo one 0.564975 0.972044
4 foo three 0.228275 -1.164593
5 foo two 1.069844 -1.478862
目录
相关文章
|
21天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
120 71
|
8天前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
50 20
|
10天前
|
存储 数据挖掘 计算机视觉
Pandas数据应用:图像处理
Pandas 是一个强大的 Python 数据分析库,主要用于处理结构化数据。尽管它不是专门为图像处理设计的,但可以利用其功能辅助图像处理任务。本文介绍如何使用 Pandas 进行图像处理,包括图像读取、显示、基本操作及常见问题解决方法。通过代码案例解释如何将图像转换为 DataFrame 格式,并探讨数据类型不匹配、内存溢出和颜色通道混淆等问题的解决方案。总结中指出,虽然 Pandas 可作为辅助工具,但在实际项目中建议结合专门的图像处理库如 OpenCV 等使用。
47 18
|
4天前
|
机器学习/深度学习 存储 算法
Pandas数据应用:客户流失预测
本文介绍如何使用Pandas进行客户流失预测,涵盖数据加载、预处理、特征工程和模型训练。通过解决常见问题(如文件路径错误、编码问题、列名不一致等),确保数据分析顺利进行。特征工程中创建新特征并转换数据类型,为模型训练做准备。最后,划分训练集与测试集,选择合适的机器学习算法构建模型,并讨论数据不平衡等问题的解决方案。掌握这些技巧有助于有效应对实际工作中的复杂情况。
123 95
|
7天前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
124 88
|
18天前
|
分布式计算 数据可视化 数据挖掘
Pandas数据应用:社交媒体分析
本文介绍如何使用Pandas进行社交媒体数据分析,涵盖数据获取、预处理、探索性分析和建模的完整流程。通过API获取数据并转换为DataFrame格式,处理缺失值和数据类型转换问题。利用Matplotlib等库进行可视化,展示不同类型帖子的数量分布。针对大规模数据集提供内存优化方案,并结合TextBlob进行情感分析。最后总结常见问题及解决方案,帮助读者掌握Pandas在社交媒体数据分析中的应用。
151 96
|
24天前
|
编解码 数据挖掘 开发者
Pandas数据导出:CSV文件
Pandas是Python中强大的数据分析库,提供了灵活的数据结构如DataFrame和Series。通过`to_csv()`函数可轻松将数据保存为CSV文件。本文介绍了基本用法、常见问题(如编码、索引、分隔符等)及解决方案,并涵盖大文件处理和报错解决方法,帮助用户高效导出数据。
143 83
|
20天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
128 73
|
12天前
|
数据采集 机器学习/深度学习 搜索推荐
Pandas数据应用:推荐系统
在数字化时代,推荐系统是互联网公司的重要组成部分,Pandas作为Python的强大数据分析库,在数据预处理和特征工程中发挥关键作用。常见问题包括缺失值、重复值处理及数据类型转换,解决方案分别为使用`fillna()`、`drop_duplicates()`和`astype()`等函数。常见报错如KeyError、ValueError和MemoryError可通过检查列名、确保数据格式正确及分块读取数据等方式解决。合理运用Pandas工具,可为构建高效推荐系统奠定坚实基础。
48 18
Pandas数据应用:推荐系统
|
5天前
|
数据采集 存储 算法
Pandas数据应用:市场篮子分析
市场篮子分析是一种用于发现商品间关联关系的数据挖掘技术,广泛应用于零售业。Pandas作为强大的数据分析库,在此领域具有显著优势。本文介绍了市场篮子分析的基础概念,如事务、项集、支持度、置信度和提升度,并探讨了数据预处理、算法选择、参数设置及结果解释中的常见问题与解决方案,帮助用户更好地进行市场篮子分析,为企业决策提供支持。
51 29

热门文章

最新文章