Pandas数据排序

简介: Pandas数据排序.sort_index() 在指定轴上根据索引进行排序,索引排序后内容会跟随排序import pandas as pdimport numpy as npb = pd.

Pandas数据排序

.sort_index() 在指定轴上根据索引进行排序,索引排序后内容会跟随排序

import pandas as pd
import numpy as np

b = pd.DataFrame(np.arange(20).reshape(4,5),index=['c','a','d','b'])
b
0 1 2 3 4
c 0 1 2 3 4
a 5 6 7 8 9
d 10 11 12 13 14
b 15 16 17 18 19
b.sort_index()
0 1 2 3 4
a 5 6 7 8 9
b 15 16 17 18 19
c 0 1 2 3 4
d 10 11 12 13 14
b.sort_index(ascending=False)
0 1 2 3 4
d 10 11 12 13 14
c 0 1 2 3 4
b 15 16 17 18 19
a 5 6 7 8 9
b.sort_index(axis=0, ascending=False) # 按行标排序,ascending:False为降序
0 1 2 3 4
d 10 11 12 13 14
c 0 1 2 3 4
b 15 16 17 18 19
a 5 6 7 8 9
b.sort_index(axis=1, ascending=False) # 按列标排序
4 3 2 1 0
c 4 3 2 1 0
a 9 8 7 6 5
d 14 13 12 11 10
b 19 18 17 16 15

.sort_values() 在指定轴上根据数值进行排序,默认升序

  • Series.sort_values(axis=0,ascending=True)
  • DataFrame.sort_values(by,axis=0,ascending=True)
    • by:axis轴上的某个索引或索引列表
dates = pd.date_range('20130101', periods=10)
dates
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06', '2013-01-07', '2013-01-08',
               '2013-01-09', '2013-01-10'],
              dtype='datetime64[ns]', freq='D')
df = pd.DataFrame(np.random.randn(10,4),index=dates,columns=['A','B','C','D'])
df.head()
A B C D
2013-01-01 -0.300266 0.683232 0.777509 -0.274338
2013-01-02 2.298084 -0.855524 1.462064 -0.725142
2013-01-03 0.512711 0.824380 0.384902 -1.437241
2013-01-04 0.388478 -1.265414 -1.104333 -0.447689
2013-01-05 0.273518 -0.314857 -2.545510 -1.301629
c = df.sort_values('B')
c.head()
A B C D
2013-01-01 -0.976353 -2.176075 0.255585 0.645465
2013-01-03 -1.549727 -1.876790 0.966724 0.486101
2013-01-06 -0.000467 -1.430820 -1.803610 -0.587985
2013-01-10 -0.293663 -0.691951 0.262666 -1.298977
2013-01-04 -0.032301 -0.618582 1.204373 -0.302137
c = df.sort_values('B',ascending = False)
c.head()
A B C D
2013-01-03 0.512711 0.824380 0.384902 -1.437241
2013-01-01 -0.300266 0.683232 0.777509 -0.274338
2013-01-08 0.010939 0.591777 0.143182 0.461798
2013-01-10 0.811169 0.100516 -1.385373 0.168329
2013-01-05 0.273518 -0.314857 -2.545510 -1.301629
# 指定1轴排序,这里指定1轴a行为基准排序
c = df.sort_values('2013-01-01',axis=1,ascending=False) 
c.head()
C B D A
2013-01-01 0.777509 0.683232 -0.274338 -0.300266
2013-01-02 1.462064 -0.855524 -0.725142 2.298084
2013-01-03 0.384902 0.824380 -1.437241 0.512711
2013-01-04 -1.104333 -1.265414 -0.447689 0.388478
2013-01-05 -2.545510 -0.314857 -1.301629 0.273518

NaN空值统一放在排序末尾

a = pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'])
a
0 1 2 3
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
b = pd.DataFrame(np.arange(20).reshape(4,5),index=['c','a','d','b'])
b
0 1 2 3 4
c 0 1 2 3 4
a 5 6 7 8 9
d 10 11 12 13 14
b 15 16 17 18 19
c = a + b
c
0 1 2 3 4
a 5.0 7.0 9.0 11.0 NaN
b 19.0 21.0 23.0 25.0 NaN
c 8.0 10.0 12.0 14.0 NaN
d NaN NaN NaN NaN NaN
c.sort_values(2,ascending = False)
0 1 2 3 4
b 19.0 21.0 23.0 25.0 NaN
c 8.0 10.0 12.0 14.0 NaN
a 5.0 7.0 9.0 11.0 NaN
d NaN NaN NaN NaN NaN
c.sort_values(2,ascending = True)
0 1 2 3 4
a 5.0 7.0 9.0 11.0 NaN
c 8.0 10.0 12.0 14.0 NaN
b 19.0 21.0 23.0 25.0 NaN
d NaN NaN NaN NaN NaN
目录
相关文章
|
21天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
120 71
|
8天前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
50 20
|
10天前
|
存储 数据挖掘 计算机视觉
Pandas数据应用:图像处理
Pandas 是一个强大的 Python 数据分析库,主要用于处理结构化数据。尽管它不是专门为图像处理设计的,但可以利用其功能辅助图像处理任务。本文介绍如何使用 Pandas 进行图像处理,包括图像读取、显示、基本操作及常见问题解决方法。通过代码案例解释如何将图像转换为 DataFrame 格式,并探讨数据类型不匹配、内存溢出和颜色通道混淆等问题的解决方案。总结中指出,虽然 Pandas 可作为辅助工具,但在实际项目中建议结合专门的图像处理库如 OpenCV 等使用。
47 18
|
4天前
|
机器学习/深度学习 存储 算法
Pandas数据应用:客户流失预测
本文介绍如何使用Pandas进行客户流失预测,涵盖数据加载、预处理、特征工程和模型训练。通过解决常见问题(如文件路径错误、编码问题、列名不一致等),确保数据分析顺利进行。特征工程中创建新特征并转换数据类型,为模型训练做准备。最后,划分训练集与测试集,选择合适的机器学习算法构建模型,并讨论数据不平衡等问题的解决方案。掌握这些技巧有助于有效应对实际工作中的复杂情况。
123 95
|
7天前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
124 88
|
18天前
|
分布式计算 数据可视化 数据挖掘
Pandas数据应用:社交媒体分析
本文介绍如何使用Pandas进行社交媒体数据分析,涵盖数据获取、预处理、探索性分析和建模的完整流程。通过API获取数据并转换为DataFrame格式,处理缺失值和数据类型转换问题。利用Matplotlib等库进行可视化,展示不同类型帖子的数量分布。针对大规模数据集提供内存优化方案,并结合TextBlob进行情感分析。最后总结常见问题及解决方案,帮助读者掌握Pandas在社交媒体数据分析中的应用。
151 96
|
24天前
|
编解码 数据挖掘 开发者
Pandas数据导出:CSV文件
Pandas是Python中强大的数据分析库,提供了灵活的数据结构如DataFrame和Series。通过`to_csv()`函数可轻松将数据保存为CSV文件。本文介绍了基本用法、常见问题(如编码、索引、分隔符等)及解决方案,并涵盖大文件处理和报错解决方法,帮助用户高效导出数据。
143 83
|
20天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
128 73
|
12天前
|
数据采集 机器学习/深度学习 搜索推荐
Pandas数据应用:推荐系统
在数字化时代,推荐系统是互联网公司的重要组成部分,Pandas作为Python的强大数据分析库,在数据预处理和特征工程中发挥关键作用。常见问题包括缺失值、重复值处理及数据类型转换,解决方案分别为使用`fillna()`、`drop_duplicates()`和`astype()`等函数。常见报错如KeyError、ValueError和MemoryError可通过检查列名、确保数据格式正确及分块读取数据等方式解决。合理运用Pandas工具,可为构建高效推荐系统奠定坚实基础。
48 18
Pandas数据应用:推荐系统
|
5天前
|
数据采集 存储 算法
Pandas数据应用:市场篮子分析
市场篮子分析是一种用于发现商品间关联关系的数据挖掘技术,广泛应用于零售业。Pandas作为强大的数据分析库,在此领域具有显著优势。本文介绍了市场篮子分析的基础概念,如事务、项集、支持度、置信度和提升度,并探讨了数据预处理、算法选择、参数设置及结果解释中的常见问题与解决方案,帮助用户更好地进行市场篮子分析,为企业决策提供支持。
51 29

热门文章

最新文章