Hbase 学习(十一)使用hive往hbase当中导入数据

简介: 我们可以有很多方式可以把数据导入到hbase当中,比如说用map-reduce,使用TableOutputFormat这个类,但是这种方式不是最优的方式。。。
我们可以有很多方式可以把数据导入到hbase当中,比如说用map-reduce,使用TableOutputFormat这个类,但是这种方式不是最优的方式。
Bulk的方式直接生成HFiles,写入到文件系统当中,这种方式的效率很高。
一般的步骤有两步:
(1)使用ImportTsv或者import工具或者自己写程序用hive/pig生成HFiles
(2)用completebulkload把HFiles加载到hdfs上
ImportTsv能把用Tab分隔的数据很方便的导入到hbase当中,但还有很多数据不是用Tab分隔的 下面我们介绍如何使用hive来导入数据到hbase当中。
1.准备输入内容
a.创建一个tables.ddl文件
-- pagecounts data comes from http://dumps.wikimedia.org/other/
pagecounts-raw/
-- documented http://www.mediawiki.org/wiki/Analytics/Wikistats
-- define an external table over raw pagecounts data
CREATE TABLE IF NOT EXISTS pagecounts (projectcode STRING, pagename
STRING, pageviews STRING, bytes STRING)
ROW FORMAT
DELIMITED FIELDS TERMINATED BY ' '
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '/tmp/wikistats';
-- create a view, building a custom hbase rowkey
CREATE VIEW IF NOT EXISTS pgc (rowkey, pageviews, bytes) AS
SELECT concat_ws('/',
projectcode,
concat_ws('/',
pagename,
regexp_extract(INPUT__FILE__NAME, 'pagecounts-(\\d{8}-\\d{6})\
\..*$', 1))),
pageviews, bytes
FROM pagecounts;
-- create a table to hold the input split partitions
CREATE EXTERNAL TABLE IF NOT EXISTS hbase_splits(partition STRING)
ROW FORMAT
SERDE 'org.apache.hadoop.hive.serde2.binarysortable.
BinarySortableSerDe'
STORED AS
INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.
HiveNullValueSequenceFileOutputFormat'
LOCATION '/tmp/hbase_splits_out';
-- create a location to store the resulting HFiles
CREATE TABLE hbase_hfiles(rowkey STRING, pageviews STRING, bytes STRING)
STORED AS
INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.hbase.HiveHFileOutputFormat'
TBLPROPERTIES('hfile.family.path' = '/tmp/hbase_hfiles/w');
b.创建HFils分隔文件,例子:sample.hql
-- prepate range partitioning of hfiles
ADD JAR /usr/lib/hive/lib/hive-contrib-0.11.0.1.3.0.0-104.jar;
SET mapred.reduce.tasks=1;
CREATE TEMPORARY FUNCTION row_seq AS 'org.apache.hadoop.hive.contrib.udf.
UDFRowSequence';
-- input file contains ~4mm records. Sample it so as to produce 5 input
splits.
INSERT OVERWRITE TABLE hbase_splits
SELECT rowkey FROM
(SELECT rowkey, row_seq() AS seq FROM pgc
TABLESAMPLE(BUCKET 1 OUT OF 10000 ON rowkey) s
ORDER BY rowkey
LIMIT 400) x
WHERE (seq % 100) = 0
ORDER BY rowkey
LIMIT 4;
-- after this is finished, combined the splits file:
dfs -cp /tmp/hbase_splits_out/* /tmp/hbase_splits;
c.创建hfiles.hql
ADD JAR /usr/lib/hbase/hbase-0.94.6.1.3.0.0-104-security.jar;
ADD JAR /usr/lib/hive/lib/hive-hbase-handler-0.11.0.1.3.0.0-104.jar;
SET mapred.reduce.tasks=5;
SET hive.mapred.partitioner=org.apache.hadoop.mapred.lib.
TotalOrderPartitioner;
SET total.order.partitioner.path=/tmp/hbase_splits;
-- generate hfiles using the splits ranges
INSERT OVERWRITE TABLE hbase_hfiles
SELECT * FROM pgc
CLUSTER BY rowkey;
2.导入数据
注意:/$Path_to_Input_Files_on_Hive_Client是hive客户端的数据存储目录
mkdir /$Path_to_Input_Files_on_Hive_Client/wikistats
wget http://dumps.wikimedia.org/other/pagecounts-raw/2008/2008-10/
pagecounts-20081001-000000.gz 
hadoop fs -mkdir /$Path_to_Input_Files_on_Hive_Client/wikistats
hadoop fs -put pagecounts-20081001-000000.
gz /$Path_to_Input_Files_on_Hive_Client/wikistats/ 
3.创建必要的表
注意:$HCATALOG_USER是HCatalog服务的用户(默认是hcat)
$HCATALOG_USER-f /$Path_to_Input_Files_on_Hive_Client/tables.ddl
执行之后,我们会看到如下的提示:
OK
Time taken: 1.886 seconds
OK
Time taken: 0.654 seconds
OK
Time taken: 0.047 seconds
OK
Time taken: 0.115 seconds
4.确认表已经正确创建
执行以下语句
$HIVE_USER-e "select * from pagecounts limit 10;"
执行之后,我们会看到如下的提示:
...
OK
aa Main_Page 4 41431
aa Special:ListUsers 1 5555
aa Special:Listusers 1 1052
再执行
$HIVE_USER-e "select * from pgc limit 10;"
执行之后,我们会看到如下的提示:
...
OK
aa/Main_Page/20081001-000000 4 41431
aa/Special:ListUsers/20081001-000000 1 5555
aa/Special:Listusers/20081001-000000 1 1052
...
5.生成HFiles分隔文件
$HIVE_USER-f /$Path_to_Input_Files_on_Hive_Client/sample.hql
hadoop fs -ls /$Path_to_Input_Files_on_Hive_Client/hbase_splits
为了确认,执行以下命令
hadoop jar /usr/lib/hadoop/contrib/streaming/hadoop-streaming-1.2.0.1.
3.0.0-104.jar -libjars /usr/lib/hive/lib/hive-exec-0.11.0.1.3.0.0-104.
jar -input /tmp/hbase_splits -output /tmp/hbase_splits_txt -inputformat
SequenceFileAsTextInputFormat
执行之后,我们会看到如下的提示:
...
INFO streaming.StreamJob: Output: /tmp/hbase_splits_txt
再执行这一句
hadoop fs -cat /tmp/hbase_splits_txt/*
执行之后,我们会看到类似这样的结果
61 66 2e 71 2f 4d 61 69 6e 5f 50 61 67 65 2f 32 30 30 38 31 30 30 31 2d 30
30 30 30 30 00 (null)
61 66 2f 31 35 35 30 2f 32 30 30 38 31 30 30 31 2d 30 30 30 30 30 30 00 
(null)
61 66 2f 32 38 5f 4d 61 61 72 74 2f 32 30 30 38 31 30 30 31 2d 30 30 30
30 30 00 (null)
61 66 2f 42 65 65 6c 64 3a 31 30 30 5f 31 38 33 30 2e 4a 50 47 2f 32 30
38 31 30 30 31 2d 30 30 30 30 30 30 00 (null)
6.生成HFiles
HADOOP_CLASSPATH=/usr/lib/hbase/hbase-0.94.6.1.3.0.0-104-security.jar
 hive -f /$Path_to_Input_Files_on_Hive_Client/hfiles.hql
以上内容是hdp的用户手册中推荐的方式,然后我顺便也从网上把最后的一步的命令格式给找出来了。
hadoop jar hbase-VERSION.jar completebulkload /user/todd/myoutput mytable
相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
5月前
|
存储 分布式数据库 数据库
Hbase学习二:Hbase数据特点和架构特点
Hbase学习二:Hbase数据特点和架构特点
86 0
|
2月前
|
存储 大数据 关系型数据库
HBase系列学习:基础知识
HBase系列学习:基础知识
HBase系列学习:基础知识
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
49 4
|
2月前
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
41 2
|
3月前
|
SQL JSON Java
Hive学习-数据查询语句
Hive学习-数据查询语句
36 6
|
3月前
|
SQL JavaScript 前端开发
Hive学习——命令行
Hive学习——命令行
58 5
|
3月前
|
SQL JavaScript 前端开发
Hive学习-数据定义语句
Hive学习-数据定义语句
40 5
|
3月前
|
SQL JavaScript 前端开发
Hive学习-lateral view 、explode、reflect和窗口函数
Hive学习-lateral view 、explode、reflect和窗口函数
49 4
|
7月前
|
SQL 关系型数据库 MySQL
Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
【2月更文挑战第9天】Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
294 7
|
5月前
|
大数据 分布式数据库 Hbase
Hbase学习三:Hbase常用命令总结
Hbase学习三:Hbase常用命令总结
711 0