使用Python Log Handler自动上传并解析KV格式的日志

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
简介: Python Logging Handler可以无需写代码自动高效上传日志, 还可以像Splunk一样对KV格式自动解析字段. 本文介绍如何简单配置.

概述

使用Python SDK提供的Log Handler可以实现每一条Python程序的日志在不落盘的情况下自动上传到日志服务上。与写到文件再通过各种方式上传比起来,有如下优势:

  1. 实时性:主动直接发送,不落盘
  2. 吞吐量大,异步发送
  3. 配置简单:无需修改程序,无需知道机器位置,修改程序配置文件即可生效
  4. 智能解析: 自动解析日志中JSON和KV格式信息

本篇主要如何打开自动解析KV格式的功能, 关于如何配置并使用的基本信息, 请参考使用Log Handler自动上传Python日志

解决的问题

在程序中, 有时我们需要将特定数据输出到日志中以便跟踪, 例如:

data = {'name':'xiao ming', 'score': 100.0}

一般情况下, 我们会格式化数据内容, 附加其他信息并输出:

data = {'name':'xiao ming', 'score': 100.0}
logger.error('get some error when parsing data. name="{}" score={}'.format(data['name'], data['score']))

这样会输出的消息为:

get some error when parsing data. name="xiao ming" score=100.0

我们期望在上传到日志服务时可以自动解析出域namescore字段. 使用Python Handler的简单配置即可做到. 如下.

通过Logging的配置文件

参考Logging Handler的详细配置, 将其中参数列表修改为:

args=(os.environ.get('ALIYUN_LOG_SAMPLE_ENDPOINT', ''), os.environ.get('ALIYUN_LOG_SAMPLE_ACCESSID', ''), os.environ.get('ALIYUN_LOG_SAMPLE_ACCESSKEY', ''), os.environ.get('ALIYUN_LOG_SAMPLE_TMP_PROJECT', ''), "logstore", None, None, None, None, None, None, None, None, None, None, None, None, True)

最后一个参数对应了Logging Handler的详细参数extract_kv参数.

注意, 受限于Python Logging的限制, 这里只能用无名参数, 依次传入. 对于不改的参数, 用None占位.

通过代码以JSON形式配置

如果期望更加灵活的配置, 也可以使用代码配置, 如下将参数extract_kv设置为True即可.

#encoding: utf8
import logging, logging.config, os

# 配置
conf = {'version': 1,
        'formatters': {'rawformatter': {'class': 'logging.Formatter',
                                        'format': '%(message)s'}
                       },
        'handlers': {'sls_handler': {'()':
                                     'aliyun.log.QueuedLogHandler',
                                     'level': 'INFO',
                                     'formatter': 'rawformatter',

                                     # custom args:
                                     'end_point': os.environ.get('ALIYUN_LOG_SAMPLE_ENDPOINT', ''),
                                     'access_key_id': os.environ.get('ALIYUN_LOG_SAMPLE_ACCESSID', ''),
                                     'access_key': os.environ.get('ALIYUN_LOG_SAMPLE_ACCESSKEY', ''),
                                     'project': 'project1',
                                     'log_store': "logstore1",
                                     'extract_kv': True
                                     }
                     },
        'loggers': {'sls': {'handlers': ['sls_handler', ],
                                   'level': 'INFO',
                                   'propagate': False}
                    }
        }
logging.config.dictConfig(conf)

# 使用
logger = logging.getLogger('sls')
logger.error("get error, reason=103 return_code=333 agent_type=ios")

支持KV的格式

默认支持key=value的格式, 也就是等号=分隔的值. 其中关键字key的范围是: 中日文, 字母数字, 下划线, 点和横线. 值value在有双引号括起来的情况下是除了双引号的任意字符. 在没有双引号括起来的情况下和关键字是一样的. 如下都是支持的:

c1 = "i=c1, k1=v1,k2=v2 k3=v3"
c2 = 'i=c2, k1=" v 1 ", k2="v 2" k3="~!@#=`;.>"'  # 双引号
c3 = 'i=c3, k1=你好 k2=他们'       # utf8
c4 = u'i=c4, 姓名=小明 年龄=中文 '   # utf8
c5 = u'i=c5, 姓名="小明" 年龄="中文"'# utf8
c6 = u'i=c6, 姓名=中文 年龄=中文'    # unicode
c7 = u'i=c7, 姓名="小明" 年龄=中文 ' # unicode
c8 = """i=c8, k1="hello           # 换行
world" k2="good
morning"
"""

自定义分隔符

默认通过等号=分隔, 也可以通过参数extract_kv_sep修改, 例如冒号:

c9 = 'k1:v1 k2:v2'

有时我们的分隔符是混合的, 有时为=有时为:, 如下:

c10 = 'k1=v1 k2:v2'
c11 = "k3 = v3"
c12 = "k4 : v4"

可以传入一个正则表达式给参数extract_kv_sep即可, 例如上面的情况可以传入(?:=|:), 这里使用可非捕获分组(?:), 再用|将各种可能的分隔符写入即可.

域名冲突

当关键字和内置日志域冲突时, 需要做一些调整, 例如:

c1 = 'student="xiao ming" level=3'

这里的level和日志域的内建表示日志级别冲突了, 可以通过参数buildin_fields_prefix / buildin_fields_suffix给系统日志域添加前缀后缀;
或者通过参数extract_kv_prefixextract_kv_suffix给抽取的域添加前缀后缀来解决.

其他定制参数

自动抽取KV也支持更多其他相关参数如下:

参数 作用 默认值
extract_kv 是否自动解析KV False
extract_kv_drop_message 匹配KV后是否丢弃掉默认的message域 False
extract_kv_prefix 给解析的域添加前缀 空串
extract_kv_suffix 给解析的域添加后缀 空串
extract_kv_sep 关键字和值的分隔符 =
buildin_fields_prefix 给系统域添加前缀 空串
buildin_fields_suffix 给系统域添加后缀 空串

进一步参考

  • 扫码加入官方钉钉群 (11775223):
    image
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
9天前
|
人工智能 搜索推荐 API
Cobalt:开源的流媒体下载工具,支持解析和下载全平台的视频、音频和图片,支持多种视频质量和格式,自动提取视频字幕
cobalt 是一款开源的流媒体下载工具,支持全平台视频、音频和图片下载,提供纯净、简洁无广告的体验
137 9
Cobalt:开源的流媒体下载工具,支持解析和下载全平台的视频、音频和图片,支持多种视频质量和格式,自动提取视频字幕
|
1天前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
14 2
|
22天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
20天前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
88 5
|
1月前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
1月前
|
Python
Python格式
Python格式
27 5
|
1月前
|
Android开发 开发者 Python
通过标签清理微信好友:Python自动化脚本解析
微信已成为日常生活中的重要社交工具,但随着使用时间增长,好友列表可能变得臃肿。本文介绍了一个基于 Python 的自动化脚本,利用 `uiautomator2` 库,通过模拟用户操作实现根据标签批量清理微信好友的功能。脚本包括环境准备、类定义、方法实现等部分,详细解析了如何通过标签筛选并删除好友,适合需要批量管理微信好友的用户。
55 7
|
2月前
|
XML 数据采集 数据格式
Python 爬虫必备杀器,xpath 解析 HTML
【11月更文挑战第17天】XPath 是一种用于在 XML 和 HTML 文档中定位节点的语言,通过路径表达式选取节点或节点集。它不仅适用于 XML,也广泛应用于 HTML 解析。基本语法包括标签名、属性、层级关系等的选择,如 `//p` 选择所有段落标签,`//a[@href='example.com']` 选择特定链接。在 Python 中,常用 lxml 库结合 XPath 进行网页数据抓取,支持高效解析与复杂信息提取。高级技巧涵盖轴的使用和函数应用,如 `contains()` 用于模糊匹配。
|
2月前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
76 8
|
2月前
|
监控 数据挖掘 数据安全/隐私保护
Python脚本:自动化下载视频的日志记录
Python脚本:自动化下载视频的日志记录

相关产品

  • 日志服务