从GitHub中整理出来的15个最受欢迎的Python开源框架,你喜欢哪个

简介: 从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。 Django: Python Web应用开发框架 Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。

从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。

Django: Python Web应用开发框架

从GitHub中整理出来的15个最受欢迎的Python开源框架,你喜欢哪个

Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。

Diesel:基于Greenlet的事件I/O框架

Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。

Flask:一个用Python编写的轻量级Web应用框架

从GitHub中整理出来的15个最受欢迎的Python开源框架,你喜欢哪个

Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2

模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数

据库、窗体验证工具。

Cubes:轻量级Python OLAP框架

Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。

Kartograph.py:创造矢量地图的轻量级Python框架

Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。

Pulsar:Python的事件驱动并发框架

Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。

Web2py:全栈式Web框架

Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。

Falcon:构建云API和网络应用后端的高性能Python框架

Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。

Dpark:Python版的Spark

DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。

Buildbot:基于Python的持续集成测试框架

从GitHub中整理出来的15个最受欢迎的Python开源框架,你喜欢哪个

Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。

Zerorpc:基于ZeroMQ的高性能分布式RPC框架

Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。

Bottle: 微型Python Web框架

Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。

Tornado:异步非阻塞IO的Python Web框架

Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。

webpy: 轻量级的Python Web框架

webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。

Scrapy:Python的爬虫框架

从GitHub中整理出来的15个最受欢迎的Python开源框架,你喜欢哪个

Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便

整理不易,如果觉得有所帮助,希望可以留下您的精彩言论再走。如果需要学习资料也可以私信我【python】,赶快为你们最喜欢的框架打Call吧。

 小编整理了2018最新的学习资料和大神分享直播。欢迎还没有找到方向的小伙伴来学习。 
目录
相关文章
|
3月前
|
数据采集 编解码 算法
Github | 推荐一个Python脚本集合项目
Github | 推荐一个Python脚本集合项目
|
3月前
|
算法 数据处理 数据安全/隐私保护
|
3月前
|
数据采集 数据可视化 Ruby
GitHub星标破万!Python学习教程(超详细),真的太强了!
Python 是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。 Python 的设计哲学之一就是简单易学,体现在两个方面: 1. 语法简洁明了:相对 Ruby 和 Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。 2. 切入点很多:Python 可以让你可以做很多事情,科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。
|
3月前
|
数据采集 数据可视化 算法
GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化
Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。
|
3月前
|
数据采集 数据可视化 算法
GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化
Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。 今天给小伙伴们分享的这份Python数据分析入门手册本着实用性的目的,着眼于整个数据分析的流程,介绍了从数据采集到可视化的大致流程。
|
3月前
|
SQL 安全 网络安全
GitHub点赞飙升!电信大牛的Python渗透测试实战指南
在网络安全领域,会不会编程,是区分“脚本小子”和真正黑客的关键。实际的渗透测试中会遇到各种复杂的网络环境,常用工具不一定能满足需求,这时就需要对现有工具进行扩展,或者编写符合要求的工具、自动化脚本,这都需要一定的编程能力。在分秒必争的 CTF 竞赛中,想要高效地使用自制脚本工具来达成各种目的,更是需要有编程能力。 Python 这两年越来越火!除了语法简单、开发效率高以外,Python 最大的优势就是拥有超多第三方库。很多有名的网络安全工具和安全系统框架都是用 Python 开发的!所以,掌握 Python 编程已经成为网络安全从业者的必备技能之一。如果你想成为一名合格的安全从业者,就不能只会
爆赞!GitHub首本Python开发实战背记手册,标星果然百万名不虚传
Python (发音:[ 'paiθ(ə) n; (US) 'paiθɔn ] n. 蟒蛇,巨蛇 ),是一种面向对象的解释性的计算机程序设计语言,也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python 语言的特点:
|
4月前
|
人工智能 数据挖掘 大数据
爆赞!GitHub首本标星120K的Python程序设计人工智能案例手册
为什么要学习Python? Python简单易学,且提供了丰富的第三方库,可以用较少的代码完成较多的工作,使开发者能够专注于如何解决问题而只花较少的时间去考虑如何编程。此外,Python还具有免费开源、跨平台、面向对象、胶水语言等优点,在系统编程、图形界面开发、科学计算、Web开发、数据分析、人工智能等方面有广泛应用。尤其是在数据分析和人工智能方面,Python已成为最受开发者欢迎的编程语言之一,不仅大量计算机专业人员选择使用Python进行快速开发,许多非计算机专业人员也纷纷选择Python语言来解决专业问题。 由于Python应用广泛,关于Python的参考书目前已经有很多,但将Pytho
|
4月前
|
分布式计算 数据可视化 大数据
阿里云大牛熬夜整理的Python大数据小抄,GitHub星标125K!
Python 是一种流行的编程语言,在大数据领域有广泛的应用。Python 拥有丰富的库和工具,可用于数据处理、分析和可视化。 在大数据处理方面,Python 可以与 Hadoop、Spark 等大数据框架集成,实现大规模数据的处理和分析。它也适用于数据清洗、数据转换、数据挖掘等任务。 此外,Python 的数据分析库如 Pandas、NumPy 和 Matplotlib 等,提供了强大的数据处理和可视化功能,使得数据分析变得更加简单和高效。
|
4月前
|
分布式计算 数据可视化 大数据
阿里云大牛熬夜整理的Python大数据小抄,GitHub星标125K!
Python 是一种流行的编程语言,在大数据领域有广泛的应用。Python 拥有丰富的库和工具,可用于数据处理、分析和可视化。 在大数据处理方面,Python 可以与 Hadoop、Spark 等大数据框架集成,实现大规模数据的处理和分析。它也适用于数据清洗、数据转换、数据挖掘等任务。 此外,Python 的数据分析库如 Pandas、NumPy 和 Matplotlib 等,提供了强大的数据处理和可视化功能,使得数据分析变得更加简单和高效。