资源 | 16个GitHub收藏和贡献率最高的深度学习框架

简介:

深度学习是一种基于对数据进行表证学习的机器学习方法,近些年不断发展并广受欢迎。

作为一个相对较新的概念,对于无论是想要进入该领域的初学者,还是已经熟知方法的老手来说,触手可及的学习资源太丰富了。

为了不被日新月异的技术和潮流所淘汰,积极参与深度学习社区中开源项目的学习和互动是个很好的方法。

在本文中文摘菌将为大家详细介绍16种GitHub中最受欢迎的深度学习开源平台和开源库,除此之外,还有些比较不错的平台和框架虽然没有进入榜单,文摘菌也列了出来,供大家参考。

64a3de52d95946bbf9d8ad313d32cf6fbfa0da98

GitHub收藏和贡献率最高的16个开源深度学习框架,圆圈的颜色越偏绿色表示框架越新,颜色越偏蓝色表明框架的时间越早。

从上图可知,TensorFlow高居榜首,第二名和第三名的是分别是Keras和Caffe。下面文摘菌就将这些资源分享给大家。

16个最棒的深度学习开源框架和平台

TensorFlow

TensorFlow最初由谷歌的Machine Intelligence research organization 中Google Brain Team的研究人员和工程师开发的。这个框架旨在方便研究人员对机器学习的研究,并简化从研究模型到实际生产的迁移的过程。

收藏: 96655, 贡献人数: 1432, 程序提交次数: 31714, 建立日期: 2015年11月1日。

链接:

https://github.com/tensorflow/tensorflow

Keras

Keras是用Python编写的高级神经网络的API,能够和TensorFlow,CNTK或Theano配合使用。

收藏: 28385, 贡献人数: 653, 程序提交次数: 4468, 建立日期: 2015年3月22日。

链接:

https://github.com/keras-team/keras

Caffe

Caffe是一个重在表达性、速度和模块化的深度学习框架,它由Berkeley Vision and Learning Center(伯克利视觉和学习中心)和社区贡献者共同开发。

收藏: 23750, 贡献人数: 267, 程序提交次数: 4128, 建立日期: 2015年9月8日。

链接:

https://github.com/BVLC/caffe

Microsoft Cognitive Toolkit

Microsoft Cognitive Toolkit(以前叫做CNTK)是一个统一的深度学习工具集,它将神经网络描述为一系列通过有向图表示的计算步骤。

收藏: 14243, 贡献人数: 174, 程序提交次数: 15613, 建立日期: 2014年7月27日。

链接:

https://github.com/Microsoft/CNTK

PyTorch

PyTorch是与Python相融合的具有强大的GPU支持的张量计算和动态神经网络的框架。

收藏: 14101, 贡献人数: 601, 程序提交次数: 10733, 建立日期: 2012年1月22日。

链接:

https://github.com/pytorch/pytorch

Apache MXnet

Apache MXnet是为了提高效率和灵活性而设计的深度学习框架。它允许使用者将符号编程和命令式编程混合使用,从而最大限度地提高效率和生产力。

收藏: 13699, 贡献人数: 516, 程序提交次数: 6953, 建立日期: 2015年4月26日。

链接:

https://github.com/apache/incubator-mxnet

DeepLearning4J

DeepLearning4J和ND4J,DataVec,Arbiter以及RL4J一样,都是Skymind Intelligence Layer的一部分。它是用Java和Scala编写的开源的分布式神经网络库,并获得了Apache 2.0的认证。

收藏:8725, 贡献人数: 141, 程序提交次数: 9647, 建立日期: 2013年11月24日。

链接:

https://github.com/deeplearning4j/deeplearning4j

Theano

Theano可以高效地处理用户定义、优化以及计算有关多维数组的数学表达式。 但是在2017年9月,Theano宣布在1.0版发布后不会再有进一步的重大进展。不过不要失望,Theano仍然是一个非常强大的库足以支撑你进行深度学习方面的研究。

收藏: 8141, 贡献人数: 329, 程序提交次数:27974, 建立日期: 2008年1月6日。

链接:

https://github.com/Theano/Theano

TFLearn

TFLearn是一种模块化且透明的深度学习库,它建立在TensorFlow之上,旨在为TensorFlow提供更高级别的API,以方便和加快实验研究,并保持完全的透明性和兼容性。

收藏: 7933, 贡献人数: 111, 程序提交次数: 589, 建立日期:2016年3月27日。

链接:

https://github.com/tflearn/tflearn

Torch

Torch是Torch7中的主要软件包,其中定义了用于多维张量的数据结构和数学运算。此外,它还提供许多用于访问文件,序列化任意类型的对象等的实用软件。

收藏: 7834, 贡献人数: 133, 程序提交次数: 1335, 建立日期:2012年1月22日。

链接:

https://github.com/torch/torch7

Caffe2

Caffe2是一个轻量级的深度学习框架,具有模块化和可扩展性等特点。它在原来的Caffe的基础上进行改进,提高了它的表达性,速度和模块化。

收藏: 7813, 贡献人数: 187, 程序提交次数: 3678, 建立日期:2015年1月21日。

链接:

https://github.com/caffe2/caffe2

PaddlePaddle

PaddlePaddle(平行分布式深度学习)是一个易于使用的高效、灵活、可扩展的深度学习平台。它最初是由百度科学家和工程师们开发的,旨在将深度学习应用于百度的众多产品中。

收藏: 6726, 贡献人数: 120, 程序提交次数: 13733, 建立日期:2016年8月28日。

链接:

https://github.com/PaddlePaddle/Paddle

DLib

DLib是包含机器学习算法和工具的现代化C ++工具包,用来基于C ++开发复杂的软件从而解决实际问题。

收藏: 4676, 贡献人数: 107, 程序提交次数: 7276, 建立日期:2008年4月27日。

链接:

https://github.com/davisking/dlib

Chainer

Chainer是基于python用于深度学习模型中的独立的开源框架,它提供灵活、直观、高性能的手段来实现全面的深度学习模型,包括最新出现的递归神经网络(recurrent neural networks)和变分自动编码器(variational auto-encoders)。

收藏: 3685, 贡献人数: 160, 程序提交次数: 13700, 建立日期: 2015年4月12日。

链接:

https://github.com/chainer/chainer

Neon

Neon是Nervana开发的基于Python的深度学习库。它易于使用,同时性能也处于最高水准。

收藏: 3466, 贡献人数: 77, 程序提交次数: 1112, 建立日期: 2015年5月3日。

链接:

https://github.com/NervanaSystems/neon

Lasagne

Lasagne是一个轻量级的库,可用于在Theano上建立和训练神经网络。

收藏: 3417, 贡献人数:64, 程序提交次数: 1150, 建立日期:2014年9月7日。

链接:

https://github.com/Lasagne/Lasagne

其他选择

  • H2O.ai

    https://github.com/h2oai/h2o-3

  • PyLearn

    https://github.com/lisa-lab/pylearn2

  • BigDL

    https://github.com/intel-analytics/BigDL

  • Shogun

    https://github.com/shogun-toolbox/shogun

  • Apache SINGA

    https://github.com/apache/incubator-singa

  • Blocks

    https://github.com/mila-udem/blocks

  • Mocha

    https://github.com/pluskid/Mocha.jl


原文发布时间为:2018-05-9
本文作者:文摘菌
本文来自云栖社区合作伙伴“ 大数据文摘”,了解相关信息可以关注“ 大数据文摘”。
相关文章
|
5月前
|
Rust 安全 前端开发
Github 轻松斩获30k+ Star,桌面应用开发太丝滑啦,Tauri框架能重塑桌面App开发?别错过,抓紧上车
Tauri 是一个基于 Rust 的开源框架,用于构建轻量级、高性能、安全的跨平台桌面及移动应用。它利用系统 WebView 渲染前端界面,后端由 Rust 编写,具备出色的性能和安全性。相比 Electron,Tauri 应用体积更小、启动更快,且默认权限更安全。它支持 React、Vue、Svelte 等主流前端框架,并提供自动更新、CLI 工具链、资源注入优化等功能,适用于生产力工具、开发者工具、数据分析、AI 应用等多种场景。目前 Tauri 在 GitHub 上已获得超过 30,000 Star,社区活跃,是现代桌面应用开发的理想选择。
563 0
|
5月前
|
机器学习/深度学习 存储 监控
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
303 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
|
5月前
|
机器学习/深度学习 自动驾驶 算法
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
660 0
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
|
4月前
|
人工智能 自然语言处理 JavaScript
Github又一AI黑科技项目,打造全栈架构,只需一个统一框架?
Motia 是一款现代化后端框架,融合 API 接口、后台任务、事件系统与 AI Agent,支持 JavaScript、TypeScript、Python 多语言协同开发。它提供可视化 Workbench、自动观测追踪、零配置部署等功能,帮助开发者高效构建事件驱动的工作流,显著降低部署与运维成本,提升 AI 项目落地效率。
410 0
|
5月前
|
前端开发 数据可视化 JavaScript
惊喜! Github 10k+ star 的国产流程图框架,LogicFlow 能解你的图编辑痛点?
LogicFlow 是一款高效、灵活的流程图编辑框架,支持可视化渲染、自定义节点、插件扩展及前端执行。适用于审批流、ER 图、低代码平台等多种场景,具备清晰架构与活跃社区,助力开发者快速实现专业流程图编辑与执行。
363 1
|
11月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
2617 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
10月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
488 6
|
10月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
356 7
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
1745 3