十大Python机器学习常用库 python开发,你用过你个?

简介: 请点击此处输入图片描述 1.Pipenv Pipenv 是 Kenneth Reitz 的业余项目,旨在将其他软件包(例如 npm 和 yarn)整合到 Python 里。它不需要安装 virtualenv, virtualenvwrapper,不用管理 requirements.txt 文件,并且不用确保依赖版本的可复现性。

pgc-image/1525486878873220d9ab62e

请点击此处输入图片描述

1.Pipenv

Pipenv 是 Kenneth Reitz 的业余项目,旨在将其他软件包(例如 npm 和 yarn)整合到 Python 里。它不需要安装 virtualenv, virtualenvwrapper,不用管理 requirements.txt 文件,并且不用确保依赖版本的可复现性。通过 Pipenv,你可以在 Pipfile 中指定依赖项。该工具可生成一个 Pipfile.lock 文件,使你的构建更具确定性,避免产生难以查找的 Bug。

2.PyTorch

PyTorch是Facebook深度学习框架,源于 Torch 框架,同时改善了 Torch 框架,基于ython 语言,由于实现了动态计算图范式, PyTorch 已经成为众多研究人员的首选框架之一,可以计算梯度,而且非常快,可扩展性强。

3. Caffe2

Caffe2 支持分布式训练、部署(即使是在移动平台上),新的 CPU 和支持 CUDA 的硬件。PyTorch 可能更适合做研究,而 Caffe2 更加适合大规模部署,就像在 Facebook 上看到的那样。另外,你可以在 PyTorch 里构建并训练模型,同时用 Caffe2 部署。

4. Pendulum

Pendulum 的优势之一在于,它是 Python 标准 datetime 替代品,因此你可以轻松地将其与现有的代码集成,并且在你需要的时候才使用它的功能。Pendulum 的作者特别注意时间分区的处理,默认在每个实例中时间分区是可用的,并且以 UTC 计时。你也可以获得扩展 timedelta 来简化 datetime 的计算。

5. Dash

Dash 是一个可构建 Web 应用,尤其是数据可视化 Web 应用的纯 Python 开源库。它建立在 Flask、Plotly 和 React 之上,并提供这几个框架的函数抽象接口,从而开发者不必学习这些框架,高效开发。这些应用程序可在浏览器和移动设备中使用。

6. PyFlux

PyFlux 是专门针对时间序列开发的 Python 开源库。时间序列研究是统计学和经济学的子领域,其目的是用于描述时间序列的行为,同时也预测时序未来的行为状态。

7. Fire

Fire 是一个开源库,可以为任何 Python 项目自动生成一个命令行界面。你几乎不需要编写任何代码或者文档,你只需要调用一个 Fire 方法并把它传递给你想要的命令行界面:一个函数、一个对象、一个类、一个库,甚至不传递任何参数。

8. imbalanced-learn

imbalanced-learn 是一个 Python 库,它提供了相关的技术来解决数据不平衡的问题。另外,它和 scikit-learn 兼容,并且是 scikit-learn-contrib 项目的一部分,非常有用。

9. FlashText

FlashText 证明了算法和数据结构设计的重要性,即使对于简单的问题,更好的算法也能够轻松超越在快 CPU 上运行的朴素实现。

10. Luminoth

Luminoth 是一个用 TensorFlow 和 Sonnet 构建的开源的计算机视觉 Python 工具包。它可直接支持物体检测,背后支持的模型是 Faster R-CNN。


以上是10个受欢迎的机器学习库,你听说或者学习了哪几个呢?感兴趣的可以深入了解一下。

目录
相关文章
|
4天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
18 0
|
4天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
74 44
|
3天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
18 7
|
3天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
13 3
|
3天前
|
算法 测试技术 开发者
性能优化与代码审查:提升Python开发效率
性能优化与代码审查:提升Python开发效率
10 1
|
5天前
|
安全 数据库 开发者
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第26天】本文详细介绍了如何在Django框架下进行全栈开发,包括环境安装与配置、创建项目和应用、定义模型类、运行数据库迁移、创建视图和URL映射、编写模板以及启动开发服务器等步骤,并通过示例代码展示了具体实现过程。
22 2
|
5天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
17 1
|
1天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
3天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
22 0
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
233 14