全方位搜集汪星人行为数据,让AI学做一只狗 | 华盛顿大学最新研究

简介:

波士顿动力的网红机器狗不仅能稳步行走,还能送快递,但是科学家们对狗和AI的畅想远不止于此。

他们想知道,AI从一只汪星人的身上可以学到什么

华盛顿大学与艾伦人工智能研究所的答案是,记录一只汪星人在各种环境中行走、取物,在狗公园玩耍、吃东西的数据,将狗的动作和到所看到的东西同步,然后形成一个“汪星人”行为数据集,并用它来培训新的AI模拟器。

这个“汪星人”AI在给出某种感官上的输入后,比如说说一个房间或街道的景象,或者一个飞过它的球——会预测一只狗在这种情况下会做什么

简单来说就是,学习成为一只优秀的汪星人。

训练机器学习系统来识别物体、从而进行街道导航及面部表情识别这样的任务虽然艰难,但它们却根本比不上进行模拟(如模拟狗的行为)的复杂程度。

华盛顿大学与艾伦人工智能研究所之间的这一合作成果,论文将在6月份在CVPR上发表(译者注:CVPR-IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。)。

4637245f8ca2849ae1db203ce6f2fe42b4c05413

通过这个项目,研究者试图让AI通过观察一只温顺的狗,来基础性地了解,怎样像狗一样行事。

为什么要进行此项工程呢?

研究者称,我们已经做了很多模拟感知的子任务,比如识别一个对象并提取它,但是在“理解智能代理人的动作与行为数据并在虚拟世界中呈现”方面却做的还远不够。

换句话说,我们需要模拟行动,不只是做一只眼睛,而是成为控制眼睛的枢纽。

那么为什么选择狗呢?

汪星人是具有足够复杂性的智能生物,“他们的目标和动机往往是先验未知的。”换句话说,狗很聪明,但我们不知道他们在想什么。

作为对这一研究项目的初步尝试,该团队希望通过密切监测狗并将其动作、行为和它所看到的环境相结合,来观察他们是否能够创建一个准确预测这些动作的系统。

9f1728886b911a422ddedf56f3c499665269ae96

为了做到这一点,他们给一只叫Kelp的爱斯基摩犬装上了基本的传感器。在Kelp的头上有一个GoPro摄像头,六个惯性测量单元(腿,尾巴和躯干),可以判断所有物体的位置,一个麦克风和一个Arduino(开源硬件)将数据绑定在一起。

他们记录了Kelp数小时的活动——观察狗在各种环境中行走,取物,在狗公园玩耍,吃东西,将狗的动作同步到所看到的东西。其结果是狗环境中以自我为中心行动的数据集,或“DECADE”(他们用它来培训新的AI代理)。

这位代理在给出某种感官上的输入后——比如说说一个房间或街道的景象,或者一个飞过它的球——会预测一只狗在这种情况下会做什么。当然,这样的预测不会严肃到细节水平——但即使只是想出如何移动它的身体以及在哪里完成也是一项非常重要的任务。

研究人员中的Hessam Bagherinezhad在一封电子邮件中解释道:“它学习了如何移动关节走路、如何在走路或跑步时避开障碍物、追逐松鼠、追随主人,在玩耍时追踪飞行的玩具等等。

这些是计算机视觉和机器人技术中的一些基本的AI任务,我们一直试图通过为每个任务收集单独的数据来解决这些问题(例如,运动规划,步行表面,物体检测,对象跟踪,人员识别)。”

c3b64e573b63e3cc9f5db4221be05bd22b31e6c9

这可以产生一些相当复杂的数据:例如,狗模型必须像狗本身一样知道,当它需要从这里到达那里时哪里可以行走。它不能在树、汽车或沙发(依据房间信息)上行走。

通过模型也可以了解到,这项研究可以作为计算机视觉模型单独部署,以找出宠物(或小腿机器人)在给定场景中可以达到的位置。

研究人员说,这只是一个初步实验,虽然取得了成功,但成果有限。其他人可能会考虑引入更多的感官(嗅觉数据是很有必要的)数据,或者看看一只(或许多)狗产生的模型如何推广到更大范围。

他们总结道:“我们希望通过这项工作,为我们更好地理解视觉智能和其他智能生物铺平道路。”


原文发布时间为:2018-04-28

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

相关文章
|
2月前
|
消息中间件 人工智能 Kafka
AI 时代的数据通道:云消息队列 Kafka 的演进与实践
云消息队列 Kafka 版通过在架构创新、性能优化与生态融合等方面的突破性进展,为企业构建实时数据驱动的应用提供了坚实支撑,持续赋能客户业务创新。
393 31
|
3月前
|
消息中间件 人工智能 运维
事件驱动重塑 AI 数据链路:阿里云 EventBridge 发布 AI ETL 新范式
“一个简单的数据集成任务,开始时总是轻松愉快的,但随着业务扩展,数据源越来越多,格式越来越乱,整个数据链路就会变得一团糟。”陈涛在演讲中指出了当前 AI 数据处理的普遍困境。扩展难、运维难、稳定性差,这三大挑战已成为制约 AI 应用创新和落地的关键瓶颈。针对这些痛点,在2025云栖大会期间,阿里云重磅发布了事件驱动 AI ETL 新范式,其核心产品 EventBridge 通过深度集成 AI 能力,为开发者提供了一套革命性的解决方案,旨在彻底改变 AI 时代的数据准备与处理方式。
410 32
|
2月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
3922 58
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
迁移学习:让小数据也能驱动AI大模型
迁移学习:让小数据也能驱动AI大模型
334 99
|
2月前
|
机器学习/深度学习 人工智能 监控
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含5000张已标注牛行为图片,涵盖卧、站立、行走三类,适用于YOLO等目标检测模型训练。数据划分清晰,标注规范,场景多样,助力智慧牧场、健康监测与AI科研。
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
|
2月前
|
存储 人工智能 安全
拔俗AI临床大数据科研分析平台:让医学研究更智能、更高效
阿里云原生AI临床大数据科研平台,打通异构医疗数据壁垒,实现智能治理、可视化分析与多中心安全协作,助力医院科研提速增效,推动精准医疗发展。
|
2月前
|
机器学习/深度学习 人工智能 监控
拔俗AI智能营运分析助手软件系统:企业决策的"数据军师",让经营从"拍脑袋"变"精准导航"
AI智能营运分析助手打破数据孤岛,实时整合ERP、CRM等系统数据,自动生成报表、智能预警与可视化决策建议,助力企业从“经验驱动”迈向“数据驱动”,提升决策效率,降低运营成本,精准把握市场先机。(238字)
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
机器学习/深度学习 人工智能 算法
拔俗AI智能营运分析助手:用技术破解企业“数据焦虑”
AI智能营运分析助手破解企业“数据多却难洞察”难题,通过自动化集成、定制化模型、可视化输出,助力中小企业实现低门槛数据驱动决策,提升营运效率与精准度。
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
拔俗AI体征营养指导系统:从数据到建议的技术闭环
AI如何读懂身体并给出科学营养建议?本文从开发者视角揭秘三大核心技术:多源异构数据融合,构建个性化推荐引擎,以及反馈驱动的持续学习系统。通过打通“感知-决策-反馈”闭环,AI真正实现千人千面的动态营养指导,成为可进化的健康伙伴。(238字)