PostgreSQL 11 preview - 分区表智能并行聚合、分组计算(已类似MPP架构,性能暴增)

简介:

标签

PostgreSQL , 分区 , 智能聚合 , 智能分组计算 , enable_partition_wise_agg


背景

PostgreSQL 并行计算开始在细节方面进行打磨,例如11已添加了JOIN的分区并行,当两个分区表的分区定义一致时,在分区字段上JOIN就可以用到分区与分区之间直接并行JOIN,而不需要将数据APPEND后在JOIN。

《PostgreSQL 11 preview - 分区表智能并行JOIN (已类似MPP架构,性能暴增)》

现在又一个PATCH要提交了,还是和分区表有关,这次是以分区为单位的聚合、分组计算。

实际上也蛮好理解的,分两种情况,

1、一种是多阶段聚合,原理如下:(常用在MPP数据库,目前PG的单表多阶段并行聚合也是这么做的)

《PostgreSQL 10 自定义并行计算聚合函数的原理与实践 - (含array_agg合并多个数组为单个一元数组的例子)》

2、第二种是智能分区并行聚合,这种情况与第一种不矛盾,但是在非多阶段聚合时也可能能起到优化作用,比如说根据分区字段进行分组聚合,那么分区与分区之间实际上是没有计算集合的重叠的,各自算各自的。

Hi all,  
  
Declarative partitioning is supported in PostgreSQL 10 and work is already  
in  
progress to support partition-wise joins. Here is a proposal for  
partition-wise  
aggregation/grouping.  Our initial performance measurement has shown 7 times  
performance when partitions are on foreign servers and approximately 15%  
when  
partitions are local.  
  
Partition-wise aggregation/grouping computes aggregates for each partition  
separately.  If the group clause contains the partition key, all the rows  
belonging to a given group come from one partition, thus allowing aggregates  
to be computed completely for each partition.  Otherwise, partial aggregates  
computed for each partition are combined across the partitions to produce  
the  
final aggregates. This technique improves performance because:  
i. When partitions are located on foreign server, we can push down the  
aggregate to the foreign server.  
ii. If hash table for each partition fits in memory, but that for the whole  
relation does not, each partition-wise aggregate can use an in-memory hash  
table.  
iii. Aggregation at the level of partitions can exploit properties of  
partitions like indexes, their storage etc.  
  
Attached an experimental patch for the same based on the partition-wise join  
patches posted in [1].  
  
This patch currently implements partition-wise aggregation when group clause  
contains the partitioning key.  A query below, involving a partitioned table  
with 3 partitions containing 1M rows each, producing total 30 groups showed  
15% improvement over non-partition-wise aggregation. Same query showed 7  
times  
improvement when the partitions were located on the foreign servers.  
Patch needs a lot of improvement including:  
1. Support for partial partition-wise aggregation  
2. Estimating number of groups for every partition  
3. Estimating cost of partition-wise aggregation based on sample partitions  
similar to partition-wise join  
and much more.  
  
In order to support partial aggregation on foreign partitions, we need  
support  
to fetch partially aggregated results from the foreign server. That can be  
handled as a separate follow-on patch.  
  
Though is lot of work to be done, I would like to get suggestions/opinions  
from  
hackers.  
  
I would like to thank Ashutosh Bapat for providing a draft patch and helping  
me off-list on this feature while he is busy working on partition-wise join  
feature.  
  
[1]  
https://www.postgresql.org/message-id/CAFjFpRcbY2QN3cfeMTzVEoyF5Lfku-ijyNR%3DPbXj1e%3D9a%3DqMoQ%40mail.gmail.com  
  
Thanks  
  
--   
Jeevan Chalke  
Principal Software Engineer, Product Development  
EnterpriseDB Corporation  
The Enterprise PostgreSQL Company  

这里有两个例子:

开启分区智能聚合,各个分区聚合后再APPEND结果。

Here is the sample plan:  
  
postgres=# set enable_partition_wise_agg to true;  
SET  
postgres=# EXPLAIN ANALYZE SELECT a, count(*) FROM plt1 GROUP BY a;  
                                                  QUERY  
PLAN  
--------------------------------------------------------------------------------------------------------------  
 Append  (cost=5100.00..61518.90 rows=30 width=12) (actual  
time=324.837..944.804 rows=30 loops=1)  
   ->  Foreign Scan  (cost=5100.00..20506.30 rows=10 width=12) (actual  
time=324.837..324.838 rows=10 loops=1)  
         Relations: Aggregate on (public.fplt1_p1 plt1)  
   ->  Foreign Scan  (cost=5100.00..20506.30 rows=10 width=12) (actual  
time=309.954..309.956 rows=10 loops=1)  
         Relations: Aggregate on (public.fplt1_p2 plt1)  
   ->  Foreign Scan  (cost=5100.00..20506.30 rows=10 width=12) (actual  
time=310.002..310.004 rows=10 loops=1)  
         Relations: Aggregate on (public.fplt1_p3 plt1)  
 Planning time: 0.370 ms  
 Execution time: 945.384 ms  
(9 rows)  

关闭分区智能聚合,需要将数据汇聚后,再进行聚合操作。

postgres=# set enable_partition_wise_agg to false;  
SET  
postgres=# EXPLAIN ANALYZE SELECT a, count(*) FROM plt1 GROUP BY a;  
                                                              QUERY  
PLAN  
---------------------------------------------------------------------------------------------------------------------------------------  
 HashAggregate  (cost=121518.01..121518.31 rows=30 width=12) (actual  
time=6498.452..6498.459 rows=30 loops=1)  
   Group Key: plt1.a  
   ->  Append  (cost=0.00..106518.00 rows=3000001 width=4) (actual  
time=0.595..5769.592 rows=3000000 loops=1)  
         ->  Seq Scan on plt1  (cost=0.00..0.00 rows=1 width=4) (actual  
time=0.007..0.007 rows=0 loops=1)  
         ->  Foreign Scan on fplt1_p1  (cost=100.00..35506.00 rows=1000000  
width=4) (actual time=0.587..1844.506 rows=1000000 loops=1)  
         ->  Foreign Scan on fplt1_p2  (cost=100.00..35506.00 rows=1000000  
width=4) (actual time=0.384..1839.633 rows=1000000 loops=1)  
         ->  Foreign Scan on fplt1_p3  (cost=100.00..35506.00 rows=1000000  
width=4) (actual time=0.402..1876.505 rows=1000000 loops=1)  
 Planning time: 0.251 ms  
 Execution time: 6499.018 ms  
(9 rows)  

场景

1、枚举、哈希分区表:

因为在不同分区中,分区字段值非常鲜明分离。可以按分区字段聚合,按分区字段GROUP BY。

2、范围分区表:

某些按分区字段GROUP BY(看GROUP BY的表达式是否有优化空间)

3、继承表,根据子表约束,选择是否可以使用分区智能聚合、GROUP。

参考

https://www.postgresql.org/message-id/flat/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com#CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com

https://commitfest.postgresql.org/17/1250/

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
5月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
3月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
400 0
|
5月前
|
数据采集 存储 分布式计算
一文读懂数据中台架构,高效构建企业数据价值
在数字化时代,企业面临数据分散、难以统一管理的问题。数据中台架构通过整合、清洗和管理数据,打破信息孤岛,提升决策效率。本文详解其核心组成、搭建步骤及常见挑战,助力企业高效用数。
1888 24
|
7月前
|
SQL 存储 OLAP
数据外置提速革命:轻量级开源SPL如何用文件存储实现MPP级性能?
传统交易型数据库在分析计算中常遇性能瓶颈,将数据迁至OLAP数据仓库虽可缓解,但成本高、架构复杂。SPL通过轻量级列存文件存储历史数据,提供强大计算能力,大幅简化架构并提升性能。它优化了列式存储、数据压缩与多线程并行处理,在常规及复杂计算场景中均表现优异,甚至单机性能超越集群。实际案例中,SPL在250亿行数据的时空碰撞问题上,仅用6分钟完成ClickHouse集群30分钟的任务。
数据外置提速革命:轻量级开源SPL如何用文件存储实现MPP级性能?
|
8月前
|
存储 消息中间件 SQL
数据中台架构与技术体系
本文介绍了数据中台的整体架构设计,涵盖数据采集、存储、计算、服务及治理等多个层面。在数据采集层,通过实时与离线方式整合多类型数据源;存储层采用分层策略,包括原始层、清洗层、服务层和归档层,满足不同访问频率需求;计算层提供批处理、流处理、交互式分析和AI计算能力,支持多样化业务场景。数据服务层封装数据为标准化API,实现灵活调用,同时强调数据治理与安全,确保元数据管理、质量监控、权限控制及加密措施到位,助力企业构建高效、合规的数据管理体系。
2231 13
|
NoSQL 关系型数据库 MySQL
微服务架构下的数据库选择:MySQL、PostgreSQL 还是 NoSQL?
在微服务架构中,数据库的选择至关重要。不同类型的数据库适用于不同的需求和场景。在本文章中,我们将深入探讨传统的关系型数据库(如 MySQL 和 PostgreSQL)与现代 NoSQL 数据库的优劣势,并分析在微服务架构下的最佳实践。
|
9月前
|
存储 数据采集 机器学习/深度学习
新闻聚合项目:多源异构数据的采集与存储架构
本文探讨了新闻聚合项目中数据采集的技术挑战与解决方案,指出单纯依赖抓取技术存在局限性。通过代理IP、Cookie和User-Agent的精细设置,可有效提高采集策略;但多源异构数据的清洗与存储同样关键,需结合智能化算法处理语义差异。正反方围绕技术手段的有效性和局限性展开讨论,最终强调综合运用代理技术与智能数据处理的重要性。未来,随着机器学习和自然语言处理的发展,新闻聚合将实现更高效的热点捕捉与信息传播。附带的代码示例展示了如何从多个中文新闻网站抓取数据并统计热点关键词。
438 2
新闻聚合项目:多源异构数据的采集与存储架构
|
10月前
|
存储 数据采集 人工智能
AllData数据中台架构全览:数据时代的智慧中枢
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
AllData数据中台架构全览:数据时代的智慧中枢
|
9月前
|
存储 SQL 并行计算
【赵渝强老师】达梦数据库MPP集群的架构
达梦数据库提供大规模并行处理(MPP)架构,以低成本实现高性能并行计算,满足海量数据存储和复杂查询需求。DM MPP采用完全对等无共享体系,消除主节点瓶颈,通过多节点并行执行提升性能。其执行流程包括主EP生成计划、分发任务、各EP并行处理及结果汇总返回。为确保高可用性,建议结合数据守护部署。
323 0
|
10月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
335 2

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多