MyRocks TTL特性介绍

简介: # 概述 MyRocks TTL(Time To Live) 特性允许用户指定表数据的自动过期时间,表数据根据指定的时间在compact过程中进行清理。 MyRocks TTL 简单用法如下, 在comment中通过ttl_duration指定过期时间,ttl_col指定过期时间列 ``` CREATE TABLE t1 ( a bigint(20) NOT NUL

概述

MyRocks TTL(Time To Live) 特性允许用户指定表数据的自动过期时间,表数据根据指定的时间在compact过程中进行清理。

MyRocks TTL 简单用法如下,

在comment中通过ttl_duration指定过期时间,ttl_col指定过期时间列

CREATE TABLE t1 (
  a bigint(20) NOT NULL,
  b int NOT NULL,
  ts bigint(20) UNSIGNED NOT NULL,
  PRIMARY KEY (a),
  KEY kb (b)
) ENGINE=rocksdb
COMMENT='ttl_duration=1;ttl_col=ts;';

也可以不指定过期时间列ttl_col,插入数据时会隐式将当前时间做为过期时间列存储到记录中。

CREATE TABLE t1 (
  a bigint(20) NOT NULL,
  PRIMARY KEY (a)
) ENGINE=rocksdb
COMMENT='ttl_duration=1;';

分区表也同样支持TTL

CREATE TABLE t1 (
    c1 BIGINT,
    c2 BIGINT UNSIGNED NOT NULL,
    name VARCHAR(25) NOT NULL,
    event DATE,
    PRIMARY KEY (`c1`) COMMENT 'custom_p0_cfname=foo;custom_p1_cfname=bar;custom_p2_cfname=baz;'
) ENGINE=ROCKSDB
COMMENT="ttl_duration=1;custom_p1_ttl_duration=100;custom_p1_ttl_col=c2;custom_p2_ttl_duration=5000;"
PARTITION BY LIST(c1) (
    PARTITION custom_p0 VALUES IN (1, 2, 3),
    PARTITION custom_p1 VALUES IN (4, 5, 6),
    PARTITION custom_p2 VALUES IN (7, 8, 9)
);

RocksDB TTL

介绍MyRocks TTL实现之前,先来看看RocksDB TTL。
RocksDB 本身也支持TTL, 通过DBWithTTL::Open接口,可以指定每个column_family的过期时间。

每次put数据时,会调用DBWithTTLImpl::AppendTS将过期时间append到value最后。

在Compact时通过自定义的TtlCompactionFilter , 去判断数据是否可以清理。具体参考DBWithTTLImpl::IsStale

bool DBWithTTLImpl::IsStale(const Slice& value, int32_t ttl, Env* env) {
  if (ttl <= 0) {  // Data is fresh if TTL is non-positive
    return false;
  }
  int64_t curtime;
  if (!env->GetCurrentTime(&curtime).ok()) {
    return false;  // Treat the data as fresh if could not get current time
  }
  int32_t timestamp_value =
      DecodeFixed32(value.data() + value.size() - kTSLength);
  return (timestamp_value + ttl) < curtime;
}

RocksDB TTL在compact时才清理过期数据,所以,过期时间并不是严格的,会有一定的滞后,取决于compact的速度。

MyRocks TTL 实现

和RocksDB TTL column family级别指定过期时间不同,MyRocks TTL可表级别指定过期时间。
MyRocks TTL表过期时间存储在数据字典INDEX_INFO中,表中可以指定过期时间列ttl_col, 也可以不指定, 不指定时会隐式生成ttl_col.

对于主键,ttl_col的值存储在value的头8个字节中,对于指定了过期时间列ttl_col的情况,value中ttl_col位置和valule的头8个字节都会存储ttl_col值,这里有一定的冗余。具体参考convert_record_to_storage_format

读取数据会自动跳过ttl_col占用的8个字节,参考convert_record_from_storage_format

对于二级索引,也会存储ttl_col同主键保持一致,其ttl_col存储在value的unpack_info中,

 if (m_index_type == INDEX_TYPE_SECONDARY &&
     m_total_index_flags_length > 0) {
   // Reserve space for index flag fields
   unpack_info->allocate(m_total_index_flags_length);

   // Insert TTL timestamp
   if (has_ttl() && ttl_bytes) {
     write_index_flag_field(unpack_info,
                            reinterpret_cast<const uchar *const>(ttl_bytes),
                            Rdb_key_def::TTL_FLAG);
   }
 }

二级索引ttl_col同主键保持一致。 对于更新显式指定的ttl_col列时,所有的二级索引都需要更新,即使此列不在二级索引列中

MyRocks TTL 清理

MyRocks TTL 清理也发生在compact时,由Rdb_compact_filter定义清理动作, 具体参考should_filter_ttl_rec

RocksDB TTL中过期时间和当前时间做比较,而MyRocks TTL 的过期时间是和最老的快照时间(m_snapshot_timestamp )做比较(当没有快照时,也取当前时间)。

  bool should_filter_ttl_rec(const rocksdb::Slice &key,
                             const rocksdb::Slice &existing_value) const {
    uint64 ttl_timestamp;
    Rdb_string_reader reader(&existing_value);
    if (!reader.read(m_ttl_offset) || reader.read_uint64(&ttl_timestamp)) {
      std::string buf;
      buf = rdb_hexdump(existing_value.data(), existing_value.size(),
                        RDB_MAX_HEXDUMP_LEN);
      // NO_LINT_DEBUG
      sql_print_error("Decoding ttl from PK value failed in compaction filter, "
                      "for index (%u,%u), val: %s",
                      m_prev_index.cf_id, m_prev_index.index_id, buf.c_str());
      abort();
    }

    /*
      Filter out the record only if it is older than the oldest snapshot
      timestamp.  This prevents any rows from expiring in the middle of
      long-running transactions.
    */
    return ttl_timestamp + m_ttl_duration <= m_snapshot_timestamp;
  }

MyRocks TTL 读过滤

前面讲到, RocksDB TTL 过期时间并不严格,取决于compaction速度。MyRocks TTL也有类似问题,因此MyRocks引入参数rocksdb_enable_ttl_read_filtering, 当开启此参数时,过期时间是严格的。
每次读取记录会调用should_hide_ttl_rec判断此记录是否过期,当compact操作不及时而没有清理的过期记录,在读取时会被过滤掉。

bool ha_rocksdb::should_hide_ttl_rec(const Rdb_key_def &kd,
                                     const rocksdb::Slice &ttl_rec_val,
                                     const int64_t curr_ts) {
  DBUG_ASSERT(kd.has_ttl());
  DBUG_ASSERT(kd.m_ttl_rec_offset != UINT_MAX);

  /*
    Curr_ts can only be 0 if there are no snapshots open.
    should_hide_ttl_rec can only be called when there is >=1 snapshots, unless
    we are filtering on the write path (single INSERT/UPDATE) in which case
    we are passed in the current time as curr_ts.

    In the event curr_ts is 0, we always decide not to filter the record. We
    also log a warning and increment a diagnostic counter.
  */
  if (curr_ts == 0) {
    update_row_stats(ROWS_HIDDEN_NO_SNAPSHOT);
    return false;
  }

  if (!rdb_is_ttl_read_filtering_enabled() || !rdb_is_ttl_enabled()) {
    return false;
  }

  Rdb_string_reader reader(&ttl_rec_val);

  /*
    Find where the 8-byte ttl is for each record in this index.
  */
   uint64 ts;
   if (!reader.read(kd.m_ttl_rec_offset) || reader.read_uint64(&ts)) {
     /*
       This condition should never be reached since all TTL records have an
       8 byte ttl field in front. Don't filter the record out, and log an error.
     */
     std::string buf;
     buf = rdb_hexdump(ttl_rec_val.data(), ttl_rec_val.size(),
                       RDB_MAX_HEXDUMP_LEN);
     const GL_INDEX_ID gl_index_id = kd.get_gl_index_id();
     // NO_LINT_DEBUG
     sql_print_error("Decoding ttl from PK value failed, "
                     "for index (%u,%u), val: %s",
                     gl_index_id.cf_id, gl_index_id.index_id, buf.c_str());
     DBUG_ASSERT(0);
     return false;
   }

   /* Hide record if it has expired before the current snapshot time. */
   uint64 read_filter_ts = 0;
 #ifndef NDEBUG
   read_filter_ts += rdb_dbug_set_ttl_read_filter_ts();
 #endif
   bool is_hide_ttl =
       ts + kd.m_ttl_duration + read_filter_ts <= static_cast<uint64>(curr_ts);
   if (is_hide_ttl) {
     update_row_stats(ROWS_FILTERED);
   }
   return is_hide_ttl;
 }

MyRocks TTL 潜在问题

Issue#683 中谈到了MyRocks TTL 有个潜在问题, 当更新显式指定的ttl_col列值时,compact时有可能将新的记录清理掉,而老的记录仍然保留,从而有可能读取到本该不可见的老记录。此问题暂时还没有close.

最后

MyRocks TTL 是一个不错的特性,可以应用在历史数据清理的场景。相比传统的Delete数据的方式,更节约空间和CPU资源,同时传统的Delete还会影响查询的效率。目前MyRocks TTL 还不够成熟,还有许多需要改进的地方。

目录
相关文章
|
8月前
|
数据采集
1-2 TTL电瓶特性
1-2 TTL电瓶特性
79 0
|
3月前
|
存储 SQL 关系型数据库
深入探究InnoDB的MVCC快照机制
本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
295 5
深入探究InnoDB的MVCC快照机制
|
7月前
|
存储 关系型数据库 MySQL
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)
|
3月前
MVCC 与其他并发控制机制的区别
【10月更文挑战第15天】总之,MVCC 与其他并发控制机制各有特点和适用场景。在实际应用中,需要根据具体的业务需求和系统特点选择合适的并发控制机制,以实现最佳的性能和数据一致性。
|
7月前
|
监控 NoSQL MongoDB
MongoDB中的TTL索引:自动过期数据的深入解析与使用方式
MongoDB中的TTL索引:自动过期数据的深入解析与使用方式
|
6月前
|
存储 关系型数据库 MySQL
InnoDB的隔离级别实现机制深度解析18
【7月更文挑战第18天】MySQL 数据库 InnoDB 存储引擎的隔离级别是通过锁和 MVCC 的机制实现的。
76 0
|
8月前
|
存储 关系型数据库 MySQL
MVCC:深入解析多版本并发控制机制
【4月更文挑战第20天】MVCC是数据库并发控制的关键技术,通过保存数据多个版本,使读写操作无锁并发,减少锁竞争,提高并发性能。它保证事务看到一致数据快照,避免并发问题,并支持事务回滚与恢复。MVCC广泛应用于PostgreSQL、InnoDB等,提供时间旅行查询和无锁读等功能,对于构建高性能、高并发数据库系统至关重要。
159 13
|
SQL Oracle 关系型数据库
深度解析 MySQL 事务、隔离级别和 MVCC 机制:构建高效并发的数据交响乐(一)
深度解析 MySQL 事务、隔离级别和 MVCC 机制:构建高效并发的数据交响乐
425 0
|
SQL NoSQL 关系型数据库
深度解析 MySQL 事务、隔离级别和 MVCC 机制:构建高效并发的数据交响乐(三)
深度解析 MySQL 事务、隔离级别和 MVCC 机制:构建高效并发的数据交响乐(三)
532 0
|
SQL 存储 NoSQL
深度解析 MySQL 事务、隔离级别和 MVCC 机制:构建高效并发的数据交响乐(二)
深度解析 MySQL 事务、隔离级别和 MVCC 机制:构建高效并发的数据交响乐(二)
596 0

热门文章

最新文章