Quick BI助力云上大数据分析---深圳云栖大会

简介: 在3月29日深圳云栖大会的数据分析与可视化专场中,阿里云产品专家陌停对大数据智能分析产品 Quick BI 进行了深入的剖析。大会现场的精彩分享也赢得观众们的一直认可和热烈的反响。 大数据分析之路的挑战与期望  阿里巴巴作为一家大数据公司,整个集团,从上到下都在践行数字化运营。

在3月29日深圳云栖大会的数据分析与可视化专场中,阿里云产品专家陌停对大数据智能分析产品 Quick BI 进行了深入的剖析。大会现场的精彩分享也赢得观众们的一直认可和热烈的反响。

758a97550104dc6dca8679c656b909b57cbfe3d8


大数据分析之路的挑战与期望 

阿里巴巴作为一家大数据公司,整个集团,从上到下都在践行数字化运营。传统的大数据分析之路,正面临着临时需求多、需求响应时间长、本地化现象严重、专业人才紧缺等挑战,急需构建一个面向业务人员的自助式大数据分析工具,让业务人员自助式实现在线数据分析,助力企业业务的数据化。

3f42075ce51f72a7f71532c1653880403c49e0fc

 

Quick BI核心能力

 

一、如何保障高性能即席查询


大数据分析的三要素是人、数据、计算与存储,而计算存储作为大数据分析的基础能力。Quick BI兼容Oracle 、Mysql等关系数据库,来支撑小数据集的分析与处理,也兼容Hadoop等分布式数据库和云数据库。Quick BI无缝兼容阿里云数据库,包括Maxcopute、Analytic DB等数据库,能做到100G数据15秒内实现汇总与查询。

35f51cf42a46c2f94d313866f482e2415388bc3f

 

二、如何降低专业人才依赖

  • 拖拽式自助分析

贴合数据人员的数据分析思维,提供查询联动、组件联动分析、下钻联动分析等能力,并基于图表组件实现拖拽式的可视化配置能力,让无技术的业务员可以自助式实现在线大数据分析与可视化。

3a972d3eac90eed5f2f2fec0d38a80b129026db8

  • 在线电子表格

打造在线电子表格能力,提供类似Excel的拖拽式、筛选、冻结及300+函数,完全演戏Excel的操作习惯,降低业务人员的学习成本,提升数据分析能力。

45e194f6a5f867b41d4ebee49fd09ae8c959221d


三、如何保障数据访问安全

 

数据本身辐射的群体是有限的,基于工作空间隔离的概念,实现基于工作空间组的在线协同分析机制。基于空间角色实现功能操作的管控,实现了最细粒度的行级数据访问控制。

 2a97c49327aae78846bb9c7b3f53e4e58a160694


大数据行业分析案例

Quick BI已经广泛应用于零售、金融、互联网、媒体、医疗健康、通讯等行业,并期待着与更多领域的企业开展合作。以两个行业应用案例为切入点,阐述Quick BI的给企业赋能的价值。我们不仅仅提供大数据分析与可视化的工具,同时也将大数据分析的思维方式和手段赋能给企业。

b00f6e245cfd7158e82e7c114c0416009b6a0f36 


持续创新

Quick BI是一款不断更新与迭代的产品,我们以“降低技术要求、解决存储计算、智能业务感知” 的目标,致力于打造大数据分析的新生态,实现人人都是分析师,助力企业业务数据化。

49bbb6c4cd50cc695ea1ff269af44ed0c2a90031
相关实践学习
阿里云实时数仓实战 - 用户行为数仓搭建
课程简介 1)学习搭建一个数据仓库的过程,理解数据在整个数仓架构的从采集、存储、计算、输出、展示的整个业务流程。 2)整个数仓体系完全搭建在阿里云架构上,理解并学会运用各个服务组件,了解各个组件之间如何配合联动。 3 )前置知识要求:熟练掌握 SQL 语法熟悉 Linux 命令,对 Hadoop 大数据体系有一定的了解   课程大纲 第一章 了解数据仓库概念 初步了解数据仓库是干什么的 第二章 按照企业开发的标准去搭建一个数据仓库 数据仓库的需求是什么 架构 怎么选型怎么购买服务器 第三章 数据生成模块 用户形成数据的一个准备 按照企业的标准,准备了十一张用户行为表 方便使用 第四章 采集模块的搭建 购买阿里云服务器 安装 JDK 安装 Flume 第五章 用户行为数据仓库 严格按照企业的标准开发 第六章 搭建业务数仓理论基础和对表的分类同步 第七章 业务数仓的搭建  业务行为数仓效果图  
目录
相关文章
|
2月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
3月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
3月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
234 49
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
3月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
3月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
3月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。

热门文章

最新文章