RSS 2016研讨会随想:质疑者是正确的吗——深度学习在机器人领域的局限和潜力都在哪里?

简介: 摘要: 有人疑问:在特定场景下,机器人的行为难以确保。比如说,自动驾驶机器人,在遇到险情时,是保护车上的主人——司机,还是要保护路上的行人?
备注:本文于2016年6月23日发表于云栖社区(20%为翻译,80%为自己的理解),这里仅作备份用。


导语:RSS(Robotics: Science and Systems,机器人:科学与系统) 是机器人领域的世界顶级学术会议。 John McCormac是伦敦帝国学院戴森机器人实验室(Dyson Robotics Lab at Imperial)的一名博士生,师从Andy Davison教授和Stefan Leutenegger博士。2016年6月,McCormac参加了在密歇根大学召开的RSS 2016大会,他在博客中分享参会的一些心得体会,以下为McCormac博客中的部分编译内容,读者朋友可点此查看其原文

在过去几年里,深度学习技术,在计算机视觉等诸多领域,带来了天翻地覆的变革。在目标识别和检测、场景分类、动作识别等分支,深度学习都有着“惊艳”地成功应用。尽管那边已经“热火朝天”,但在机器人视觉研究这边,深度学习的应用,才刚刚拉开舞台的幕布。
 
目前,深度学习已经开始在机器人领域“牛刀小试”。例如,在视觉引导机器人的抓取和操纵研究上,就有了成功的应用。

a592597142299a0b72e3e962db6d96da9720e72b
图片来源:谷歌深度思维团队Raia Hadsell在RSS 2016报告幻灯片

但即便如此,深度学习,仍然没有发展成为机器人领域的主流方法。这是因为,有许多著名的机器人、人工智能等领域的专家,直言不讳他们的质疑和顾虑,他们不相信深度学习能在不同的机器人应用场景中,得到普及使用,并质疑深度学习驱动下的机器人安全性能。
 
质疑者在哪里?
 
整体来说, 研讨会很有意思。在研讨会快结束的时候,主持人Pieter Abbeel(斯坦福大学副教授)问道,现场有多少的观众,对深度学习在机器人领域的应用,秉持怀疑态度,150~200的观众席中,仅有5~10名观众举手表示质疑。
 
即使身处质疑者的阵营,他们的立场也并非坚定如铁,因为在被问到为啥质疑时,他们表态说,作为机器人研究的一个辅助工具,深度学习还是有用武之地的。
 
质疑者的疑虑,并非空穴来风,这些疑虑主要来自两个方面,一是在特定场景下,机器人的行为难以确保。比如说,自动驾驶机器人,在遇到险情时,是保护车上的主人——司机,还是要保护路上的行人?
 
二是深度学习的可解释性。深度学习在某些领域的应用效果极佳,可是为什么极佳,深度学习的应用者们,目前为止,也未能给出合理的解释。
 
针对第一点疑虑,著名未来学家Kevin Kelly(昵称KK)在《失控》一书中给出了一点解释。KK预言未来的世界,有两个特征:(1) 自然生命体的机械化;(2) 人造生命体的生物化。对于类似与机器人的人造生命体,KK非常乐观地告诉我们,不必担心:作为造物者,我们要对人造生命体负责,让他们遵循机器人三定律就好。(你信KK所言吗?你不疑虑吗?)
 
质疑阵营和拥护阵营之间,并非泾渭分明。时间流逝掉得不仅仅是岁月,还有观念的淡化或转化。下面说的就是一个有关质疑者的故事——Larry Jackel(著名人工智能专家、North C .科技公司主席)曾经参与了一个关于神经网络未来的著名赌局。
 
一场有关神经网络的著名赌局
 
我们知道,卷积神经网络是深度学习最重要的分支之一。“卷积”和“深度”是神经网络互相独立的两个性质。“卷积”指的是前端有卷积层;“深度”指的是除了卷积层之外还有很多层。现在看来,深度学习在很多领域都是风生水起,大放异彩。但这仅仅是“看见贼吃肉,没见贼挨揍”。
 
虽然大部分人的感觉,深度学习是最近几年才迅速崛起的,但深度学习的基础理论——人工神经网络,早在上个世纪八十年代,就有了一定的发展,后期遭遇瓶颈,进入漫长的“冬眠期”。其中卷积神经网络在刚面世时,就受到了很多人的质疑,Vladinmir Vapnik就是众多质疑者的一个。Vapnik是何许人也?此君来头不小。他不仅是一名出色的数学家,而且还是目前应用最广的人工智能模式之一——支持向量机(SVM)之父。
 
那时(1995年),Jackel认为,到2000年,人们能够明确了解人工神经网络能够发挥多大作用。
 
Vapnik并不认可这个观点。他认为,别说1995了,就算到2005年,也就是十年后,任何思维正常的人,都不会知道神经网络有啥用,怎么用。
 
1995年3月,在谁也不能说服谁的情况下,二人决定打赌定输赢。赌注是一顿奢华晚餐。
 
双方在证人面前签字画押,Yann  LeCun是第三方签名人(Yann LeCun ,目前炙手可热的人工智能专家,Facebook人工智能实验室主任,纽约大学数据科学中心创始人,当年由 Jackel招进贝尔实验室)。
 
一开始,Vapnik赢了,因为到了2000年,神经网络的内部工作原理,基本上仍然被神秘所笼罩,研究人员无法明确地判断出,如何让神经网络更好地应用在现实生活之中。
 
但Vapnik猜到了前头,却没有猜到后头。
 
在2005年左右(更确切地说是2006年),加拿大多伦多大学教授、机器学习领域的泰斗Hinton教授和他的学生Salakhutdinov在顶尖学术刊物《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的“拓疆扩土”的浪潮。这篇文章提供了两个核心信息:(1)很多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻划,从而有利于可视化或分类;(2)深度神经网络在训练上的难度,可以通过“逐层初始化”(Layer-wise pre-training)来有效克服,可在海量数据上展开并行神经网络的参数训练。
 
现在的局面,大家看到了。在很多领域中,深度学习(卷积神经网络)得到非常广泛而深入的应用。如果Jackel已经兑现了自己的赌注,那么现在的Vapnik,似乎应该回请Jackel两顿奢华晚餐,作为补偿。在现实面前,如果Vapnik不固执己见,那么这名先前的质疑者,是时候转变自己的观点了。
 
虽然深度学习有了比较广泛的应用,但质疑并没有结束。
 
比如说,深度学习这项技术虽然很强大,但为啥这么强大?即使是深度学习的领域专家,也不能给出令人信服的理由。也就是说,深度学习的内部工作原理,仍然是云罩雾绕,仍然是个有待破解的谜。
 
因此,也有人说,深度学习压根就不是什么科学嘛,仅仅是一个工程而已。如同那句人工智能的调侃:“有多少人工,就有多少智能”。深度学习的调参,何尝不是一个体力活?

96f45a451f46a703413ca087ffee3d8c0437ea9b
图片来源:Oliver Brock在RSS 2016报告幻灯片(Oliver Brock为德国柏林大学 机器人与生物实验室研究员)
 
如果深度学习内部的机理都弄不清楚,就把这套理论应用在更贴近人们生活中的机器人上,这靠谱吗?安全性又如何保证?人们不能不疑虑重重啊!
 
沉默的大多数
 
在这次研讨会上,表面上看来,现场表示质疑的人,比例较小(5/150左右),但实际上,这个比例可能要大得多,因为有些观众即使身处“质疑者”阵营,也不会轻易公开发声。所以,不论是问卷调查也好,还是举手表决也罢,不要认为,在这类场景下,就一定能够把大多数人的真实意思表达出来。
 
之所以这么说,是有其理论依据的。早在1974年,德国社会学家伊丽莎白•诺尔-诺依曼(Elisabeth Noelle-Neumann)就在其名著《沉默的螺旋》(The Spiral Of Silence)中 ,就表达了类似的观点:大多数个人会力图避免由于单独持有某些态度和信念而产生的孤立。因为害怕孤立,他便不太愿意把自己的观点说出来。因此,当发觉自己的某一观点无人或很少有人理会(有时会有群起而攻之的遭遇),即使自己赞同它,也会保持沉默。意见一方的沉默,造成另一方意见的增势,如此循环往复,便形成了一方的声音越来越强大,从而形成“沉默的大多数”,而另一方越来越沉默下去的螺旋发展过程。
 
质疑还在继续,他们是正确的吗?让时间给出答案吧。
 
译者介绍:张玉宏,著有《品味大数据》一书。
相关文章
|
2月前
|
机器学习/深度学习 传感器 算法
深度学习之基于视觉的机器人导航
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。
75 5
|
7月前
|
机器学习/深度学习 数据可视化 数据处理
【专栏】随着技术进步,深度学习在图像识别的潜力将持续挖掘,为各领域创新提供支持
【4月更文挑战第27天】本文探讨了深度学习在图像识别的应用,包括人脸识别、物体识别、医学图像分析、图像分类与标注及AR/VR中的角色。同时,指出了数据标注、模型复杂性、小样本学习、安全性及模型解释性等挑战。未来发展趋势涉及多模态融合、模型压缩、自监督学习、可解释性及跨领域应用。随着技术进步,深度学习在图像识别的潜力将持续挖掘,为各领域创新提供支持。
99 4
|
4月前
|
机器学习/深度学习 算法 机器人
使用Python实现深度学习模型:智能灾害响应与救援机器人
使用Python实现深度学习模型:智能灾害响应与救援机器人
82 16
|
5月前
|
机器学习/深度学习 自然语言处理 机器人
基于深度学习的智能语音机器人交互系统设计方案
**摘要** 本项目旨在设计和实现一套基于深度学习的智能语音机器人交互系统,该系统能够准确识别和理解用户的语音指令,提供快速响应,并注重安全性和用户友好性。系统采用分层架构,包括用户层、应用层、服务层和数据层,涉及语音识别、自然语言处理和语音合成等关键技术。深度学习模型,如RNN和LSTM,用于提升识别准确率,微服务架构和云计算技术确保系统的高效性和可扩展性。系统流程涵盖用户注册、语音数据采集、识别、处理和反馈。预期效果是高识别准确率、高效处理和良好的用户体验。未来计划包括系统性能优化和更多应用场景的探索,目标是打造一个适用于智能家居、医疗健康、教育培训等多个领域的智能语音交互解决方案。
|
6月前
|
机器学习/深度学习 搜索推荐 TensorFlow
深度学习在医学影像诊断中的应用正在逐渐展现出巨大的潜力
深度学习在医学影像诊断中的应用正在逐渐展现出巨大的潜力
|
7月前
|
机器学习/深度学习 人工智能 机器人
[译][AI 机器人] Atlas的电动新时代,不再局限于人类运动范围的动作方式
波士顿动力宣布液压Atlas机器人退役,推出全新电动Atlas,旨在实现更广泛的实际应用。这款全电动机器人将拓展人类运动范围,解决复杂工业挑战。现代汽车公司将参与其商业化进程,作为测试应用场景。波士顿动力计划与创新客户合作,逐步迭代Atlas的应用,打造高效、实用的移动机器人解决方案。Atlas将结合强化学习和计算机视觉等先进技术,通过Orbit软件平台进行管理,未来将在真实世界中发挥超越人类能力的作用。
|
7月前
|
机器学习/深度学习 存储 算法
强化深度学习中使用Dyna-Q算法和优先遍历算法在机器人实战中的对比分析(超详细 附源码)
强化深度学习中使用Dyna-Q算法和优先遍历算法在机器人实战中的对比分析(超详细 附源码)
69 0
|
7月前
|
机器学习/深度学习 算法 数据可视化
强化深度学习中使用Dyna-Q算法确定机器人问题中不同规划的学习和策略实战(超详细 附源码)
强化深度学习中使用Dyna-Q算法确定机器人问题中不同规划的学习和策略实战(超详细 附源码)
92 0
|
7月前
|
机器学习/深度学习 算法 机器人
强化深度学习中利用时序差分法确定扫地机器人问题的最优解(附源码 超详细必看)
强化深度学习中利用时序差分法确定扫地机器人问题的最优解(附源码 超详细必看)
133 0
|
机器学习/深度学习 存储 人工智能
人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)
聊天机器人(ChatRobot)的概念我们并不陌生,也许你曾经在百无聊赖之下和Siri打情骂俏过,亦或是闲暇之余与小爱同学谈笑风生,无论如何,我们都得承认,人工智能已经深入了我们的生活。目前市面上提供三方api的机器人不胜枚举:微软小冰、图灵机器人、腾讯闲聊、青云客机器人等等,只要我们想,就随时可以在app端或者web应用上进行接入。但是,这些应用的底层到底如何实现的?在没有网络接入的情况下,我们能不能像美剧[《西部世界》(Westworld)](https://movie.douban.com/subject/2338055/)里面描绘的那样,机器人只需要存储在本地的“心智球”就可以和人类沟
人工智能不过尔尔,基于Python3深度学习库Keras/TensorFlow打造属于自己的聊天机器人(ChatRobot)