AI大事件 | 斯坦福初创公司发力AI硬件,DeepMind删除神经元了解深度学习

简介:

3de0c19c10c469249d27088ee7fc74b4e5ff5882

呜啦啦啦啦啦小伙伴们大家好呀!过去的一周中AI圈都发生了什么?大佬们讨论了哪些问题?研究者们发布了哪些值得一读的论文?又有哪些开源的代码和数据库可以使用了?快快跟随文摘菌盘点过去一周AI大事件!

新闻

Uber自动驾驶汽车在亚利桑那州发生致命事故

来源:WWW.THEGUARDIAN.COM 

链接:

https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

坦佩警方表示,Uber自动驾驶汽车在车祸发生时处于自动驾驶模式,被撞到的行人后来在医院死亡。此次事件是第一起致命的自动驾驶汽车交通事故。

点击查看大数据文摘相关报道:


SambaNova System为AI硬件募集5600万美元

来源:TECHCRUNCH.COM

链接:

https://techcrunch.com/2018/03/15/the-red-hot-ai-chip-space-gets-even-hotter-with-56m-for-a-startup-called-sambanova/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

这家初创公司由两位斯坦福大学教授Kunle Olukotun和ChrisRé共同创立,并由前Oracle开发高级副总裁Rodrigo Liang领导。Olukotun和Liang不会涉及架构的细节,但他们正在试图重新构建操作硬件,用来优化在图像和语音识别等领域越来越流行的以AI为中心的框架。


TensorFlow 1.7.0 RC1发布

来源:GITHUB.COM

链接:

https://github.com/tensorflow/tensorflow/releases/tag/v1.7.0-rc1?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Eager Execution现在从contrib包移出到了Tensorflow的核心。其他更改包括更容易计算的自定义渐变,Tensorflow图形调试器和SQLite数据集。


Skyline AI新融资$3M

来源:TECHCRUNCH.COM

链接:

https://techcrunch.com/2018/03/22/skyline-ai-raises-3m-from-sequoia-capital-to-help-real-estate-investors-make-better-decisions/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

Skyline AI是一家以色列的初创公司,使用机器学习帮助房地产投资者识别有潜力的房产。它日前宣布已经从红杉资本筹集了300万美元的种子资金。


文章&教程

随机搜索VS Model-Free RL

来源:WWW.ARGMIN.NET 

链接:

http://www.argmin.net/2018/03/20/mujocoloco/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

简单随机搜索可以在MuJoCo等基准问题上超越强化学习算法吗? 答案是肯定的。

相应论文:

https://arxiv.org/abs/1803.07055


蒙特卡洛树搜索初学者指南

来源:INT8.IO

链接:

https://int8.io/monte-carlo-tree-search-beginners-guide/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

蒙特卡洛树搜索(MCTS)的深入介绍,许多棋盘游戏代理都使用这个算法,包括国际象棋引擎和AlphaGo。其主要目的是在当前游戏状态下选择下一个最优的行为。


机器学习重现性危机

来源:PETEWARDEN.COM

链接:

https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

在机器学习领域,重现往往很难。当涉及到跟踪变化和重建模型时,整个领域仍处于黑暗时代。这篇文章列出了一些挑战以及我们如何接近它们。


通过神经元删除了解深度学习

来源:DEEPMIND.COM

链接:

https://deepmind.com/blog/understanding-deep-learning-through-neuron-deletion/?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

DeepMind的一组研究人员通过删除单个神经元以及神经元组来观测这种操作对网络的性能影响。他们发现可解释的神经元并不比难解释活动的混淆神经元更重要,并且相比仅能对它们之前看到的图像进行分类的网络,能够正确分类看不见的图像的网络对神经元删除更具适应性。


代码,项目&数据


强化学习大冒险:Pytorch Deep Q Learning教程

来源:GITHUB.COM

链接:

https://github.com/higgsfield/RL-Adventure?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

这个教程在PyTorch和Jupyter中实现了一系列深度Q学习算法,其代码清晰易读。这个代码库是了解各种算法之间差异的良好开始。


如何训练神经核心模型

来源:MEDIUM.COM

链接:

https://medium.com/huggingface/how-to-train-a-neural-coreference-model-neuralcoref-2-7bb30c1abdfe?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

这篇文章将指导您了解Coherence解决方案系统的工作原理以及如何使用CoNLL 2012数据集进行训练。完整的代码在Github上可用。


PyTorch中的随机加权平均

来源:GITHUB.COM

链接:

https://github.com/timgaripov/swa?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

该文档库包含PyTorch实现的随机加权平均(SWA)训练方法,适用于DNN的训练方法,包括平均权重导向Wider Optima和Better Generalization。


LabNotebook:监控机器学习实验

来源:GITHUB.COM

链接:

https://github.com/henripal/labnotebook?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

LabNotebook是一个纯Python工具,允许使用者监控,记录,保存和查询所有的机器学习实验。这个库看起来很有潜力,但目前仍处于alpha版本状态。


爆款论文


简单的随机搜索与强化学习的竞争

来源:ARXIV.ORG

链接:

https://arxiv.org/abs/1803.07055?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

作者介绍了一种随机搜索方法,用于训练连续控制问题的静态线性策略,使基准MuJoCo运动任务的最新样本效率相匹配。搜索算法的效率至少比这些基准测试中最快的免竞争模型方法高15倍。


多尺度神经语言建模分析

来源:ARXIV.ORG

链接:

https://arxiv.org/abs/1803.08240?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

语言建模中的许多先进方法都引入了新颖,复杂和专业的体系结构。作者采用基于LSTM和QRNN的现有最先进的词级语言模型,并将它们扩展到更大的词汇表和字符级粒度。经过适当调整后,LSTM和QRNN分别在字符级别(Penn Treebank,enwik8)和单词级别(WikiText-103)数据集上获得了最新结果。使用单个现代GPU仅需12小时(WikiText-103)至2天(enwik8)即可获得结果。


突击深入强化学习

来源:ARXIV.ORG

链接:

https://arxiv.org/abs/1803.03835?utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=The%20Wild%20Week%20in%20AI

作者使用以前训练过的'教师'代理训练新的'学生'代理。作者表示,在计算密集型多任务基准测试(DMLab-30)中,kickstarted训练可提高新代理的数据效率,从而实现更快的迭代。同样的启动管道可以让一个学生代理利用专门从事个人任务的多位“专家”教师。在这种情况下,kickstarted代理可以把从头开始培训的“学生”代理与几乎减少10倍的步骤相匹配,并将其最终性能提升42%。


原文发布时间为:2018-03-27

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号


相关文章
|
8月前
|
人工智能 并行计算 Linux
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
斯坦福大学推出的FramePack技术通过压缩输入帧上下文长度,解决视频生成中的"遗忘"和"漂移"问题,仅需6GB显存即可在普通笔记本上实时生成高清视频。
1969 19
斯坦福黑科技让笔记本GPU也能玩转AI视频生成!FramePack:压缩输入帧上下文长度!仅需6GB显存即可生成高清动画
|
9月前
|
人工智能 运维 监控
从大规模恶意攻击 DeepSeek 事件看 AI 创新隐忧:安全可观测体系建设刻不容缓
唯有通过全行业的协同努力,加强整体、完善的网络安全可观测建设,才能为 AI 技术的创新和发展构建一个安全而稳固的环境。我们期盼并相信,在攻克这些网络安全难题之后,AI 创新将迎来更加安全、灿烂的未来。
|
5月前
|
人工智能 文字识别 供应链
高校实验实训课程开发:基于现有的硬件基础和开源能力研发最前沿的AI实验课程
更多基于学校现有硬件基础:企业需求场景的开发和发展,更加注重上层数据和应用,各类工具软件的出现,极大提升了各类硬件的应用价值。我们看到各类硬件厂商,想方设法把硬件卖给学校,但是很多硬件不是在那里尘封,就是寥寥无几的使用场景,我们希望基于学校现有的硬件基础去开发更多面向不同行业或专业的实验实训课程,物尽其用。基于学校现有的硬件,集约开发,极大降低硬件投入成本。
239 7
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
用AI精准定位问题代码,调试时间直接砍半!LocAgent:斯坦福开源代码调试神器,多跳推理锁定问题代码
LocAgent是由斯坦福大学、耶鲁大学等顶尖机构联合开发的代码定位框架,通过将代码库转化为图结构并利用大语言模型的多跳推理能力,实现精准的问题代码定位。
770 1
用AI精准定位问题代码,调试时间直接砍半!LocAgent:斯坦福开源代码调试神器,多跳推理锁定问题代码
|
9月前
|
人工智能 自然语言处理
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
谷歌推出专为药物研发设计的TxGemma大模型,具备药物特性预测、生物文献筛选、多步推理等核心能力,提供20亿至270亿参数版本,显著提升治疗开发效率。
322 7
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
|
9月前
|
人工智能 vr&ar 图形学
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
牛津大学与谷歌联合推出的Bolt3D技术,能在单个GPU上仅用6.25秒从单张或多张图像生成高质量3D场景,基于高斯溅射和几何多视角扩散模型,为游戏、VR/AR等领域带来革命性突破。
395 2
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
|
8月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
319 8
|
8月前
|
人工智能 运维 监控
从大规模恶意攻击 DeepSeek 事件看 AI 创新隐忧:安全可观测体系建设刻不容缓
本文探讨了中国大模型DeepSeek在全球范围内的成功及其面临的网络安全挑战。DeepSeek以低成本、高性能的特点迅速走红,甚至超越ChatGPT,但同时也遭受了大规模恶意攻击,如DDoS和密码暴力破解。文章分析了这些攻击对AI行业的影响,并提出通过阿里云构建安全可观测体系的解决方案,包括流量监控、日志审计与异常检测等,为AI技术的安全发展提供保障。
321 0
|
10月前
|
人工智能 NoSQL Redis
Collaborative Gym:斯坦福人机协作框架开源!异步交互+三方感知,让你的AI学会主动补位
介绍Collaborative Gym,一个专注于人机协作的框架,支持异步交互和多种任务环境。
404 14
Collaborative Gym:斯坦福人机协作框架开源!异步交互+三方感知,让你的AI学会主动补位

热门文章

最新文章