战略性情绪分析的5大数据来源

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 每个公司都想知道客户对自身的感受。而情绪分析可以获取更具细粒度的信息,还能用于提高员工的满意度。本文作者为 Andrew C. Oliver,文章系国内 ITOM 管理平台 OneAPM 编译呈现。

【编者按】每个公司都想知道客户对自身的感受。而情绪分析可以获取更具细粒度的信息,还能用于提高员工的满意度。本文作者为 Andrew C. Oliver,文章系国内 ITOM 管理平台 OneAPM 编译呈现。

在世界的某个角落,有人发推特说“这家航空公司太糟糕了!”在过去,这些抱怨就被忽视了。现在,许多航空公司会充满歉意地回应(“对于您的不愉快经历,我们深感抱歉——请发私信给我们,我们会努力解决”)或邀请你拨打一个800号码(不过你可能一直在等待接通中)。

名为情绪分析的工具,或消极与积极情绪的数学上分类,使公司可以借助更有效的方式分析各种通信渠道中的语言数据,不仅限于推特。测量公司内外部的情绪状态,是非常有价值的。以下是五个最有价值的情绪数据来源。

客户问询

当客户询问你的产品或服务时,整体情绪的指标,信息的长度,用词,都可以与以往的询问相对比。不同的询问需要不同的处理方式。

客户服务

当客户投诉一个问题时,他或她是真的不愉快呢,还是简单地询问呢,“嗨,你们能查询一下这个问题吗?” 这些互动的情绪分析有助于跟踪客户对公司或产品的感觉。客户关系稳固吗?当与一个没有经验的接线员沟通时,客户感到满意吗?

员工互动

当员工在交谈时,他们是开心的吗?满意吗?同样,有哪些员工感到不愉快或不满意呢?你已经对邮件进行木马和IP入侵的扫描,为什么不扫描情绪呢?无论是电子邮件,Slack,还是其他聊天工具,沟通和情绪分值都是非常有用的工具,可以了解员工的感受,以及他们离开公司的可能。

与 HR 的互动

当HR与员工交谈时,互动是怎么样的?他们解决问题了吗,或是员工最后悻悻地离开了?开心的员工更有可能留在公司,至少不太容易起诉。

新闻和公共数据

对于大型上市公司,这点特别有用。当然,你的公关公司会在每个月底给你发送数据列表,但是,你的新闻趋势是积极还是消极的,话题又是什么呢?

通过观察这些数据集,你可以加强自身的市场营销和公关运营,还可以改善员工流动率,并最终提高客户服务水平。情绪分析对于大多数开发人员都是现成的,容易获得的。它提供了一个量化业务成功的有效方法,并借助数据科学来提高业务水平。

本文转自 OneAPM 官方博客

原文地址:
http://www.javaworld.com/article/3084477/application-development/5-big-data-sources-for-strategic-sentiment-analysis.html

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
30天前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
53 4
|
29天前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
63 5
|
2月前
|
存储 大数据 测试技术
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
381 1
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
|
3月前
|
分布式计算 Hadoop 大数据
Jupyter 在大数据分析中的角色
【8月更文第29天】Jupyter Notebook 提供了一个交互式的开发环境,它不仅适用于 Python 编程语言,还能够支持其他语言,包括 Scala 和 R 等。这种多语言的支持使得 Jupyter 成为大数据分析领域中非常有价值的工具,特别是在与 Apache Spark 和 Hadoop 等大数据框架集成方面。本文将探讨 Jupyter 如何支持这些大数据框架进行高效的数据处理和分析,并提供具体的代码示例。
93 0
|
6天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
5天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
29 1
|
6天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
9天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
24天前
|
存储 SQL 分布式计算
湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
【10月更文挑战第7天】湖仓一体架构深度解析:构建企业级数据管理与分析的新基石
41 1
|
30天前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
26 4