ubuntu1404_64单机安装Hadoop2.7.3

简介: JDK、Hadoop、Hive官网下载,Hive默认(嵌入式derby 模式) http://hadoop.

JDK、Hadoop、Hive官网下载,Hive默认(嵌入式derby 模式)
http://hadoop.apache.org/releases.html
http://www.apache.org/dyn/closer.cgi/hive/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
参考文档
http://www.powerxing.com/install-hadoop/
创建用户和组,设置密码

root@hive:~# useradd -m hadoop -s /bin/bash
root@hive:~# passwd hadoop
Enter new UNIX password: 
Retype new UNIX password: 
passwd: password updated successfully

切换hadoop用户后,配置SSH免密登录

root@hive:~# su hadoop
hadoop@hive:/root$ cd 
hadoop@hive:~$ ssh-keygen -t rsa -P '' 
#密钥默认存放在/home/hadoop/.ssh/目录下
hadoop@hive:~$ cat ./.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
hadoop@hive:~$ chmod 0600 !$
chmod 0600 ~/.ssh/authorized_keys

验证
这里写图片描述
配置Java环境

hadoop@hive:~# tar xvf jdk-8u111-linux-x64.tar.gz -C /usr/share/java/
hadoop@hive:~# vim .bash_profile
hadoop@hive:~# cat !$
cat .bash_profile
export JAVA_HOME=/usr/share/java/jdk1.8.0_111/
export PATH=$PATH:$JAVA_HOME/bin
hadoop@hive:~# source !$
source .bash_profile
hadoop@hive:~# java -version
java version "1.8.0_111"
Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)

Hadoop配置
core-site.xml:包括HDFS、MapReduce的I/O以及namenode节点的url(协议、主机名、端口)等核心配置,datanode在namenode上注册后,通过此url跟client交互

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/core-site.xml 
<configuration>
        <property>
             <name>fs.defaultFS</name>
             <value>hdfs://localhost:9000</value>
        </property>
</configuration>

hdfs-site.xml: HDFS守护进程配置,包括namenode,secondary namenode,datanode

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/hdfs-site.xml 
<configuration>
        <property>
             <name>dfs.replication</name>
             <value>1</value>
        </property>
</configuration>

mapred-site.xml:MapReduce守护进程配置,包括jobtracker和tasktrackers

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/mapred-site.xml
<configuration>
        <property>
             <name>mapreduce.framework.name</name>
             <value>yarn</value>
        </property>
</configuration>

全局资源管理配置
http://www.cnblogs.com/gw811/p/4077318.html

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/yarn-site.xml 
<configuration>
   <property>
      <name>yarn.nodemanager.aux-services</name> 
      <value>mapreduce_suffle</value>
   </property> 
</configuration>

配置与hadoop运行环境相关的变量

hadoop@hive:~$ vim hadoop-2.7.3/etc/hadoop/hadoop-env.sh
export JAVA_HOME=/usr/share/java/jdk1.8.0_111/

nameNode 格式化并启动,如果修改了hostname,/etc/hosts文件也需要添加本地解析,否则初始化会报错namenode unknown

hadoop@hive:~$ hadoop-2.7.3/bin/hdfs namenode -format
hadoop@hive:~$ hadoop-2.7.3/sbin/start-dfs.sh 
Starting namenodes on [localhost]
localhost: starting namenode, logging to /home/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-namenode-hive.out
localhost: starting datanode, logging to /home/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-datanode-hive.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /home/hadoop/hadoop-2.7.3/logs/hadoop-hadoop-secondarynamenode-hive.out

成功启动后,可访问web界面查看nameNode和datanode信息以及HDFS中的文件。
这里写图片描述
伪分布式启动 YARN为可选操作,启动后可以通过web界面查看任务运行情况

hadoop@hive:~$ hadoop-2.7.3/sbin/start-yarn.sh 
starting yarn daemons
starting resourcemanager, logging to /home/hadoop/hadoop-2.7.3/logs/yarn-hadoop-resourcemanager-hive.out
localhost: starting nodemanager, logging to /home/hadoop/hadoop-2.7.3/logs/yarn-hadoop-nodemanager-hive.out
root@hive:/home/hadoop# jps
5366 ResourceManager
5014 DataNode
4904 NameNode
7354 Jps
5214 SecondaryNameNode
7055 RunJar

这里写图片描述
监听端口

listen conf description
9000 core-site.xml NameNode RPC交互
9001 mapred-site.xml JobTracker交互
50030 mapred-site.xml Tracker Web管理
50060 mapred-site.xml TaskTracker HTTP
50070 hdfs-site.xml NameNode Web管理
50010 hdfs-site.xml DataNode控制端口
50020 hdfs-site.xml DataNode RPC交互
50075 hdfs-site.xml DataNode HTTP
50090 hdfs-site.xml Secondary NameNode Web管理

解压Hive安装包,配置运行环境变量

hadoop@hive:~$ tar xvf apache-hive-2.1.0-bin.tar.gz
hadoop@hive:~$ tail -3 .bash_profile 
export HADDOP_HOME=/home/hadoop/hadoop-2.7.3/
export HIVE_HOME=/home/hadoop/apache-hive-2.1.0-bin/
export PATH=$PATH:$HADDOP_HOME/bin:$HADDOP_HOME/bin:$HIVE_HOME/bin
hadoop@hive:~$ source !$
source .bash_profile

HDFS上创建目录并设置权限

hadoop@hive:~$ hadoop fs -mkdir -p /tmp
hadoop@hive:~$ hadoop fs -mkdir -p /user/hive/warehouse
hadoop@hive:~$ hadoop fs -chmod g+w /tmp
hadoop@hive:~$ hadoop fs -chmod g+w /user/hive/warehouse

初始化数据库

hadoop@hive:~$ schematool -dbType derby -initSchema
SLF4J: Class path contains multiple SLF4J bindings.
..........
Starting metastore schema initialization to 2.1.0
Initialization script hive-schema-2.1.0.derby.sql
Initialization script completed
schemaTool completed

测试

hive> show databases;
OK
default
Time taken: 0.014 seconds, Fetched: 1 row(s)
hive> CREATE TABLE ss7_traffic (DATA_DATE string,
    > CdPA_SSN int, CdPA_ID int,
    > CgPA_SSN int, CgPA_ID int,
    > otid string, dtid string,
    > OPCODE int, imsi string,
    > msisdn string, MSRN string,
    > MSCN string, VLRN string)
    > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
    > WITH SERDEPROPERTIES ( "separatorChar" = ',',"quoteChar" = '"', "escapeChar" = '"' )
    > STORED AS TEXTFILE;
OK
Time taken: 2.747 seconds
hive> LOAD DATA LOCAL INPATH './data.csv' OVERWRITE INTO TABLE ss7_traffic;
Loading data to table default.ss7_traffic
OK
Time taken: 2.552 seconds
hive> CREATE TABLE ss7_optype ( OPTYPE string, OPCODE int )
    > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
    > WITH SERDEPROPERTIES (
    > "separatorChar" = ',',"quoteChar" = '"', "escapeChar" = '"' )
    > STORED AS TEXTFILE;
OK
Time taken: 0.142 seconds
hive> LOAD DATA LOCAL INPATH './OPTYPE.csv' OVERWRITE INTO TABLE ss7_optype;
Loading data to table default.ss7_optype
OK
Time taken: 0.512 seconds
hive> CREATE TABLE ss7_gtlist ( GTN string, WB string )
    > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
    > WITH SERDEPROPERTIES ( "separatorChar" = ',', "quoteChar" = '"',
    > "escapeChar" = '"' ) STORED AS TEXTFILE;
OK
Time taken: 0.155 seconds
hive> SELECT t1.* FROM ss7_traffic t1 JOIN ss7_optype t2 ON t1.opcode = t2.opcode
    > AND t2.optype = 'intraPlmn' WHERE t1.CgPA_id NOT IN 
    > ( SELECT gtn FROM ss7_gtlist WHERE wb = 'w');
目录
相关文章
|
27天前
|
Ubuntu 开发工具 git
Ubuntu安装homebrew的完整教程
本文介绍了如何在没有公网的情况下安装 Homebrew。首先访问 Homebrew 官网,然后通过阿里云的镜像克隆安装脚本,并创建普通用户进行安装。接着修改 `install.sh` 文件指向国内镜像,执行安装命令。最后配置环境变量并更换 Homebrew 源为国内镜像,确保安装顺利。
174 50
|
2月前
|
Ubuntu Linux 测试技术
Linux系统之Ubuntu安装cockpit管理工具
【10月更文挑战第13天】Linux系统之Ubuntu安装cockpit管理工具
168 4
Linux系统之Ubuntu安装cockpit管理工具
|
2月前
|
Ubuntu 应用服务中间件 nginx
Ubuntu安装笔记(三):ffmpeg(3.2.16)源码编译opencv(3.4.0)
本文是关于Ubuntu系统中使用ffmpeg 3.2.16源码编译OpenCV 3.4.0的安装笔记,包括安装ffmpeg、编译OpenCV、卸载OpenCV以及常见报错处理。
180 2
Ubuntu安装笔记(三):ffmpeg(3.2.16)源码编译opencv(3.4.0)
|
2月前
|
Kubernetes Ubuntu Docker
从0开始搞K8S:使用Ubuntu进行安装(环境安装)
通过上述步骤,你已经在Ubuntu上成功搭建了一个基本的Kubernetes单节点集群。这只是开始,Kubernetes的世界广阔且深邃,接下来你可以尝试部署应用、了解Kubernetes的高级概念如Services、Deployments、Ingress等,以及探索如何利用Helm等工具进行应用管理,逐步提升你的Kubernetes技能树。记住,实践是最好的老师,不断实验与学习,你将逐渐掌握这一强大的容器编排技术。
227 1
|
2月前
|
Ubuntu Linux
软件安装(五):Ubuntu 18.04安装Teamviewer 看一遍就会
这篇文章介绍了在Ubuntu 18.04系统上通过图形界面和命令行两种方法安装TeamViewer远程控制软件的步骤。
41 2
|
1月前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
2月前
|
Ubuntu Linux
Ubuntu 16.04下无法安装.deb的解决方法
希望以上策略能有效协助您克服在Ubuntu 16.04中安装.deb文件时遇到的挑战。
46 0
|
分布式计算 Ubuntu Hadoop
Hadoop 的安装和使用(基于Linux~Ubuntu的虚拟机)
Hadoop 的安装和使用(基于Linux~Ubuntu的虚拟机)
1039 0
Hadoop 的安装和使用(基于Linux~Ubuntu的虚拟机)
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
177 6
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
71 2