MongoDB aggregate聚合

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:

aggregate相当于 相当于mysql中的group以及一系列的操作

官网介绍地址:http://docs.mongodb.org/manual/reference/sql-aggregation-comparison/


表达式 描述 实例
$sum 总结从集合中的所有文件所定义的值. db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])
$avg 从所有文档集合中所有给定值计算的平均. db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$avg : "$likes"}}}])
$min 获取集合中的所有文件中的相应值最小. db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$min : "$likes"}}}])
$max 获取集合中的所有文件中的相应值的最大 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$max : "$likes"}}}])
$push 值插入到一个数组生成文档中. db.mycol.aggregate([{$group : {_id : "$by_user", url : {$push: "$url"}}}])
$addToSet 值插入到一个数组中所得到的文档,但不会创建重复. db.mycol.aggregate([{$group : {_id : "$by_user", url : {$addToSet : "$url"}}}])
$first 根据分组从源文档中获取的第一个文档。通常情况下,这才有意义,连同以前的一些应用 “$sort”-stage. db.mycol.aggregate([{$group : {_id : "$by_user", first_url : {$first : "$url"}}}])
$last 根据分组从源文档中获取最后的文档。通常,这才有意义,连同以前的一些应用 “$sort”-stage. db.mycol.aggregate([{$group : {_id : "$by_user", last_url : {$last : "$url"}}}])



相关operators如下:


  • $project: 用于选择从收集的一些具体字段。(别名,显示或者不显示)

  • $match: 这是一个滤波操作,因此可以减少量,作为下一阶段的输入给定的文档。(查询条件)

  • $group: 如上所讨论的,这不实际的聚合。 (需要进行分组的字段,sum等也在这里进行)

  • $sort: 文件排序。(排序)

  • $skip: 与此有可能向前跳过的文件列表中的一个给定的的文档数量。(用于分页)

  • $limit: 这限制了的文档数量看一下由从当前位置开始的给定数(用于分页)

  • $unwind: 这是用来平仓文档的中使用数组。使用数组时,数据是一种pre-joinded,再次有个别文件,此操作将被取消。因此,这个阶段,数量会增加文件的下一阶段。(这个很少使用)




对应java中的操作如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
BasicDBObject fields =  new  BasicDBObject( "email" 1 );
           DBObject project =  new  BasicDBObject( "$project" , fields );
           
           
           BasicDBObject groupFilters =  new  BasicDBObject( "_id" "$name" );
           groupFilters.put( "sumage" new  BasicDBObject( "$sum" "$age" ));
           groupFilters.put( "totalage" new  BasicDBObject( "$avg" "$age" ));
           BasicDBObject group =  new  BasicDBObject( "$group" , groupFilters);
           
           AggregationOutput aggrresult =  this .mongoTemplate.getCollection( "test" ).aggregate(matchOpt,project, group);    //如果还有sort,skip等则继续在后面追加
           
           
           //或者可以将所有的operate加入list中,如下
           List list =  new  ArrayList();
           list.add(group);
           list.add(project );
           AggregationOutput aggrresult =  this .mongoTemplate.getCollection( "test" ).aggregate(list);     //如此同样可以
        






      本文转自布拉君君 51CTO博客,原文链接:http://blog.51cto.com/5148737/1638101,如需转载请自行联系原作者



相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
2月前
|
SQL NoSQL Unix
MongoDB 聚合
10月更文挑战第17天
26 4
|
3月前
|
SQL NoSQL Unix
MongoDB聚合操作总结
这篇文章总结了MongoDB中聚合操作的作用、方法、常见聚合表达式以及聚合管道的概念和常用操作符,以及SQL与MongoDB聚合操作的对应关系。
45 2
MongoDB聚合操作总结
|
2月前
|
SQL NoSQL 数据处理
深入探索MongoDB的聚合操作
【10月更文挑战第13天】
24 0
|
3月前
|
NoSQL MongoDB 数据库
python3操作MongoDB的crud以及聚合案例,代码可直接运行(python经典编程案例)
这篇文章提供了使用Python操作MongoDB数据库进行CRUD(创建、读取、更新、删除)操作的详细代码示例,以及如何执行聚合查询的案例。
35 6
|
3月前
|
SQL NoSQL JavaScript
04 MongoDB各种查询操作 以及聚合操作总结
文章全面总结了MongoDB中的查询操作及聚合操作,包括基本查询、条件筛选、排序以及聚合管道的使用方法和实例。
95 0
|
4月前
|
持续交付 jenkins Devops
WPF与DevOps的完美邂逅:从Jenkins配置到自动化部署,全流程解析持续集成与持续交付的最佳实践
【8月更文挑战第31天】WPF与DevOps的结合开启了软件生命周期管理的新篇章。通过Jenkins等CI/CD工具,实现从代码提交到自动构建、测试及部署的全流程自动化。本文详细介绍了如何配置Jenkins来管理WPF项目的构建任务,确保每次代码提交都能触发自动化流程,提升开发效率和代码质量。这一方法不仅简化了开发流程,还加强了团队协作,是WPF开发者拥抱DevOps文化的理想指南。
93 1
|
4月前
|
NoSQL BI 数据处理
【超实用攻略】MongoDB 聚合框架:从入门到精通,带你解锁数据处理新姿势!
【8月更文挑战第24天】MongoDB是一款以其灵活性和高性能闻名的NoSQL数据库。其强大的聚合框架采用管道式处理,允许用户定义多个数据处理阶段如过滤、分组等。本文通过示例数据库`orders`和`products`,演示如何利用聚合框架计算各产品的总销售额。示例代码展示了使用`$lookup`连接两集合、`$unwind`打平数组及`$group`按产品ID分组并计算总销售额的过程。这突显了聚合框架处理复杂查询的强大能力,是进行数据分析和报表生成的理想选择。
58 3
|
4月前
|
存储 NoSQL JavaScript
MongoDB存储过程实战:聚合框架、脚本、最佳实践,一文全掌握!
【8月更文挑战第24天】MongoDB是一款备受欢迎的文档型NoSQL数据库,以灵活的数据模型和强大功能著称。尽管其存储过程支持不如传统关系型数据库,本文深入探讨了MongoDB在此方面的最佳实践。包括利用聚合框架处理复杂业务逻辑、封装业务逻辑提高复用性、运用JavaScript脚本实现类似存储过程的功能以及考虑集成其他工具提升数据处理能力。通过示例代码展示如何创建订单处理集合并定义验证规则,虽未直接实现存储过程,但有效地演示了如何借助JavaScript脚本处理业务逻辑,为开发者提供更多实用指导。
77 2
|
4月前
|
存储 NoSQL 数据处理
【MongoDB大神级操作】揭秘聚合框架,让你的数据处理能力瞬间飙升,秒变数据界的超级英雄!
【8月更文挑战第24天】MongoDB是一款备受欢迎的非关系型数据库,以其灵活的文档模型和出色的可扩展性著称。其聚合框架尤其亮眼,能高效地对数据库中的数据执行复杂的转换与聚合操作,无需将数据导出到应用端处理,极大提升了数据处理的效率与灵活性。例如,在一个大型电商数据库中,聚合框架能轻松分析出最热卖的商品或特定时段内某类别商品的销售总额。通过一系列管道操作,如$unwind、$group等,可以对数据进行逐步处理并得到最终结果,同时还支持过滤、排序、分页等多种操作,极大地丰富了数据处理的能力,成为进行数据分析、报表生成及复杂业务逻辑实现的强大工具。
78 2
|
4月前
|
持续交付 jenkins C#
“WPF与DevOps深度融合:从Jenkins配置到自动化部署全流程解析,助你实现持续集成与持续交付的无缝衔接”
【8月更文挑战第31天】本文详细介绍如何在Windows Presentation Foundation(WPF)项目中应用DevOps实践,实现自动化部署与持续集成。通过具体代码示例和步骤指导,介绍选择Jenkins作为CI/CD工具,结合Git进行源码管理,配置构建任务、触发器、环境、构建步骤、测试及部署等环节,显著提升开发效率和代码质量。
80 0