跟我一起数据挖掘(23)——C4.5

简介: C4.5简介 C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。

C4.5简介

C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。

由于ID3算法在实际应用中存在一些问题,于是Quinlan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。

C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。

C4.5的分类器示意图

我们以一个很典型被引用过多次的训练数据集D为例,来说明C4.5算法如何计算信息增益并选择决策结点。

无标题

由其中四个属性来决定是否进行活动还是取消活动。上面的训练集有4个属性,即属性集合A={OUTLOOK, TEMPERATURE, HUMIDITY, WINDY};而类标签有2个,即类标签集合C={Yes, No},分别表示适合户外运动和不适合户外运动,其实是一个二分类问题。

C4.5的优缺点及算法流程

C4.5算法的优点是:产生的分类规则易于理解,准确率较高。

C4.5算法的缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

C4.5的算法流程:

image

DEMO示例

算法测试:

https://github.com/zongtui/zongtui-Algorithm-test

目录
相关文章
|
4月前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
机器学习/深度学习 数据采集 算法
数据挖掘-到底在解决什么问题(一)
数据挖掘-到底在解决什么问题(一)
180 0
数据挖掘-到底在解决什么问题(一)
|
数据挖掘 Go 数据库
数据分析与数据挖掘研究之一 (下)
数据分析与数据挖掘研究之一
数据分析与数据挖掘研究之一 (下)
|
数据挖掘 数据库 Perl
数据分析与数据挖掘研究之一 (上)
之前做过一些数据分析与数据挖掘相关的工作,最近抽空将之前做的内容简单整理一下,方便查看,主要使用R语言和PERL脚本语言,使用TCGA和ICGC数据库中的临床数据,做类似的分析可以参考一下,如果想查看详细内容与数据可以通过本人的Gitee及Github仓库下载,链接于篇尾附上。
数据分析与数据挖掘研究之一 (上)
|
机器学习/深度学习 自然语言处理 算法
数据挖掘
简单介绍数据挖掘的概念以及常见的流程
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】数据挖掘总结 ( 数据挖掘相关概念 ) ★★(二)
【数据挖掘】数据挖掘总结 ( 数据挖掘相关概念 ) ★★(二)
160 0
【数据挖掘】数据挖掘总结 ( 数据挖掘相关概念 ) ★★(二)
|
存储 机器学习/深度学习 SQL
【数据挖掘】数据挖掘总结 ( 数据挖掘相关概念 ) ★★(一)
【数据挖掘】数据挖掘总结 ( 数据挖掘相关概念 ) ★★(一)
197 0
|
机器学习/深度学习 算法 数据可视化
数据挖掘(二)
7.预测模型 预测模型检验并识别现有数据中的模式,以预测未来的结果。构建预测模型包括应用统计技术来获取和显示公开数据中所包含的信息。 图2.6预测模型 决策树 决策树是最通用的建模技术之一。该模型可以单独用于预测,也可以用作开发其他预测模型建模技术。
|
数据采集 存储 机器学习/深度学习
数据挖掘(一)
1.简介 大数据时代正在唤醒企业通过利用客户数据获得竞争优势的机会。数据的广泛使用性和高度复杂性让仅使用传统决策技术来盈利变成不可能。这些传统方法主要使用电子表格,数据库查询和其它商业智能工具。另外,人们对从大数据中提取的有用信息和知识方法越来越感兴趣,这使得决策风格从基于经验直觉逐渐转变成数据驱动。