MySQL · 特性分析 · InnoDB transaction history

简介: 背景 在写压力负载比较重的MySQL实例上,InnoDB可能积累了较长的没有被purge掉的transaction history,导致实例性能的衰减,或者空闲空间被耗尽,下面就来看看它是怎么产生的,或者有没有什么方法来减轻,避免这样的问题出现。 InnoDB purge 概要 InnoDB是

背景

在写压力负载比较重的MySQL实例上,InnoDB可能积累了较长的没有被purge掉的transaction history,导致实例性能的衰减,或者空闲空间被耗尽,下面就来看看它是怎么产生的,或者有没有什么方法来减轻,避免这样的问题出现。

InnoDB purge 概要

InnoDB是一个事务引擎,实现了MVCC特性,也就是在存储引擎里对行数据保存了多个版本。在对行数据进行delete或者update更改时,行数据的前映像会保留一段时间,直到可以被删除的时候。

在大部分OLTP负载情况下,前映像会在数据操作完成后的数秒钟内被删除掉,但在一些情况下,假设存在一些持续很长时间的事务需要看到数据的前映像,那么老版本的数据就会被保留相当长一段时间。

虽然MySQL 5.6版本增加了多个purge threads来加快完成老版本数据的清理工作,但在write-intensive workload情况下,不一定完全凑效。

测试案例

Peter Zaitsev 使用sysbench的update进行的测试,无论是 innodb_purge_threads=1 还是8的时候,显示的transaction history快速增长的情况,如下图所示:

transaction history增长情况

transaction history增长情况

下面看一下同步测试过程中purge的速度(可以通过I_S.innodb_metrics进行查询):

InnoDB purge 情况

InnoDB purge 情况

显示在并发 process 的过程中,purge thread 其实处在饥饿状态,待sysbench结束,purge线程满载运行清理工作。

对于这个测试结果,这里需要说明下:

  1. 对于Peter Zaitsev的测试,其实主要是为了说明transaction history的情况,如果是用sysbench进行小事务的OLTP测试,并不会产生这么明显的transaction history增长而purge thread 跟不上的情况,或者他在测试的时候,对sbtest表进行了全表查询吧,或者设置了RR级别,不过这只是猜测。
  2. 对于undo page大部分被cache在buffer pool的情况下,purge thread还是比较快的,但如果因为buffer pool的不足而导致undo page被淘汰到disk上的情况,purge操作就会被受限IO情况, 而导致跟不上。

问题分析

我们来看下出现transaction history增长最常见的两种场景:

大查询
如果你在一张大表上发起一个长时间运行的查询,比如mysqldump,那么purge线程必须停下来等待查询结束,这个时候transaction undo就会累积。如果buffer pool中 free page紧张,undo page 还会被置换到disk上,加剧purge的代价。

MySQL重启
即使transaction history并没有急剧增加,但MySQL重启操作,buffer pool的重新预热,还是导致purge变成IO密集型操作。不过MySQL 5.6提供了InnoDB buffer pool的dump和reload方法,可以显著减轻purge的IO压力。

这里介绍一下如何查看buffer pool中undo page的cache情况,percona的版本上提供了I_S.innodb_rseg记录undo的分配和使用情况:

mysql> select sum(curr_size)*16/1024 undo_space_MB from innodb_rseg;
+---------------+
| undo_space_MB |
+---------------+
|     1688.4531 |
+---------------+
1 row in set (0.00 sec)
mysql> select count(*) cnt, count(*)*16/1024 size_MB, page_type from innodb_buffer_page group by page_type;
+--------+-----------+-------------------+
| cnt    | size_MB   | page_type         |
+--------+-----------+-------------------+
|     55 |    0.8594 | EXTENT_DESCRIPTOR |
|      2 |    0.0313 | FILE_SPACE_HEADER |
|    108 |    1.6875 | IBUF_BITMAP       |
|  17186 |  268.5313 | IBUF_INDEX        |
| 352671 | 5510.4844 | INDEX             |
|     69 |    1.0781 | INODE             |
|    128 |    2.0000 | SYSTEM            |
|      1 |    0.0156 | TRX_SYSTEM        |
|   6029 |   94.2031 | UNDO_LOG          |
|  16959 |  264.9844 | UNKNOWN           |
+--------+-----------+-------------------+
10 rows in set (1.65 sec)

从这两个information_schema下的两张表可以看到:undo space使用的总大小是1.7G,而buffer pool中cached不足100M。

InnoDB 优化方法

在一定的写压力情况下,并发进行一些大查询,transaction history就会因为undo log无法purge而一直增加。

InnoDB提供了两个参数innodb_max_purge_laginnodb_max_purge_lag_delay 来调整,即当trx_sys->rseg_history_len超过了设置的innodb_max_purge_lag,就影响DML操作最大delay不超过innodb_max_purge_lag_delay设置的时间,以microseconds来计算。

其核心计算代码如下:

/*******************************************************************//**
Calculate the DML delay required.
@return delay in microseconds or ULINT_MAX */
static
ulint
trx_purge_dml_delay(void)
/*=====================*/
{
     /* Determine how much data manipulation language (DML) statements
     need to be delayed in order to reduce the lagging of the purge
     thread. */
     ulint     delay = 0; /* in microseconds; default: no delay */

     /* If purge lag is set (ie. > 0) then calculate the new DML delay.
     Note: we do a dirty read of the trx_sys_t data structure here,
     without holding trx_sys->mutex. */

     if (srv_max_purge_lag > 0) {
          float     ratio;

          ratio = float(trx_sys->rseg_history_len) / srv_max_purge_lag;

          if (ratio > 1.0) {
               /* If the history list length exceeds the
               srv_max_purge_lag, the data manipulation
               statements are delayed by at least 5000
               microseconds. */
               delay = (ulint) ((ratio - .5) * 10000);
          }

          if (delay > srv_max_purge_lag_delay) {
               delay = srv_max_purge_lag_delay;
          }

          MONITOR_SET(MONITOR_DML_PURGE_DELAY, delay);
     }

     return(delay);
}

但这两个参数设计有明显的两个缺陷:

缺陷1:针对total history length
假设transaction history中保留两类records,一类是是马上可以被purge的,一类是因为active transaction而不能purge的。但大多数时间,我们期望的是purgable history比较小,而不是整个history。

缺陷2:针对大小而非变化
trx_sys->rseg_history_len是一个当前history的长度,而不是一个interval时间段内undo的增长和减少的变化情况,导致trx_sys->rseg_history_len一旦超过innodb_max_purge_lag这个设定的值,就对DML产生不超过innodb_max_purge_lag_delay的时间delay,一旦低于这个值马上delay 时间就又恢复成 0。

在对系统的吞吐监控的时候,会发现系统抖动非常厉害,而不是一个平滑的曲线。类似于下图:

Purge 造成系统抖动

Purge 造成系统抖动

InnoDB purge 设计思路

针对InnoDB的purge功能,可以从以下几个因素来综合考虑:

  1. 增加默认 purge thread 的个数;
  2. 测量 purgable history 长度而不是总的长度;
  3. 针对变化进行调整 delay 数值,以应对 shrinking;
  4. 基于 undo space 的大小,而不是事务的个数;
  5. 调整 undo page 在 buffer pool 中的缓存策略,类似 insert buffer;
  6. 针对 undo page 使用和 index page 不同的预读策略。

以上6条可以针对purge线程进行一些改良。

当前调优方法

在当前的 MySQL 5.6 版本上,我们能做哪些调整或者调优方法,以减少transaction history增加带来的问题呢?

监控
监控trx_sysinnodb_history_list_length,为它设置报警值,及时关注和处理。

调整参数
如果你的实例是写压力比较大的话,调整innodb_purge_threads=8,增加并发purge线程数。
谨慎调整innodb_max_purge_laginnodb_max_purge_lag_delay参数,依据现在的设计,可能你的实例的吞吐量会急剧的下降。

purge完之后再shutdown
大部分的case下,MySQL实例重启后,会发现purge的性能更差,因为undo page未命中的原因,并且是random IO请求。
如果是正常shutdown,就等purge完成再shutdown;如果是crash,就启动后等purge完成再接受业务请求。

预热
使用MySQL 5.6 提供的innodb_buffer_pool_dump_at_shutdown=on 和 innodb_buffer_pool_load_at_startup=on进行预热,把undo space page预热到buffer pool中。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
2月前
|
存储 消息中间件 监控
MySQL 到 ClickHouse 明细分析链路改造:数据校验、补偿与延迟治理
蒋星熠Jaxonic,数据领域技术深耕者。擅长MySQL到ClickHouse链路改造,精通实时同步、数据校验与延迟治理,致力于构建高性能、高一致性的数据架构体系。
MySQL 到 ClickHouse 明细分析链路改造:数据校验、补偿与延迟治理
|
3月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
165 3
|
3月前
|
SQL 监控 关系型数据库
MySQL事务处理:ACID特性与实战应用
本文深入解析了MySQL事务处理机制及ACID特性,通过银行转账、批量操作等实际案例展示了事务的应用技巧,并提供了性能优化方案。内容涵盖事务操作、一致性保障、并发控制、持久性机制、分布式事务及最佳实践,助力开发者构建高可靠数据库系统。
|
2月前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
507 5
|
3月前
|
存储 关系型数据库 MySQL
介绍MySQL的InnoDB引擎特性
总结而言 , Inno DB 引搞 是 MySQL 中 高 性 能 , 高 可靠 的 存 储选项 , 宽泛 应用于要求强 复杂交易处理场景 。
157 15
|
8月前
|
存储 网络协议 关系型数据库
MySQL8.4创建keyring给InnoDB表进行静态数据加密
MySQL8.4创建keyring给InnoDB表进行静态数据加密
291 1
|
3月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
251 6
|
3月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
172 1
|
4月前
|
存储 关系型数据库 MySQL
深入理解MySQL索引类型及其应用场景分析。
通过以上介绍可以看出各类MySQL指标各自拥有明显利弊与最佳实践情墁,在实际业务处理过程中选择正确型号极其重要以确保系统运作流畅而稳健。
198 12
|
3月前
|
关系型数据库 MySQL 数据库
MySql事务以及事务的四大特性
事务是数据库操作的基本单元,具有ACID四大特性:原子性、一致性、隔离性、持久性。它确保数据的正确性与完整性。并发事务可能引发脏读、不可重复读、幻读等问题,数据库通过不同隔离级别(如读未提交、读已提交、可重复读、串行化)加以解决。MySQL默认使用可重复读级别。高隔离级别虽能更好处理并发问题,但会降低性能。
181 0

相关产品

  • 云数据库 RDS MySQL 版
  • 推荐镜像

    更多