VxWorks下USB驱动总结2

本文涉及的产品
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 1个月
简介: <p>3:USBD驱动详解 </p> <p>这一部分将要描述USBD(USB Host Driver)的典型应用。例如初始化,client注册,动态连接注册,设备配置,数据传输,同时还探讨了USBD内部设计的关键特性。这部分是VxWorks下USB驱动的核心。 </p> <p> </p> <p>1 初始化USBD:分为两步 </p> <p>(1)必须至少调用一次函数usbdIni

3:USBD驱动详解

这一部分将要描述USBD(USB Host Driver)的典型应用。例如初始化,client注册,动态连接注册,设备配置,数据传输,同时还探讨了USBD内部设计的关键特性。这部分是VxWorks下USB驱动的核心。

 

1 初始化USBD:分为两步

(1)必须至少调用一次函数usbdInitialize()。在一个给定的系统中,usbdlnifialize()初始化内部USBD数据结构,并依次调用其它USB驱动栈模块的入口。usbdinitialize()可以在启动时调用一次,也可以对每一个设备各调用一次。USBD 自己记录了调用usbdInitialize()(‘+’)和usbdShutDown()(‘-’)的次数。只有大于等于1时才是真正初始化了,而等于0是关闭了。

 

...

/* Initialize the USBD. */

if (usbdInitialize () != OK)

return ERROR;

...

...

/* application code. */

...

...

/* Shut down the USBD. Note: we only execute this code if the return

* code from usbdInitialize() was OK. Note also that there’s really no

* reason to check the result of usbdShutdown().

*/

usbdShutdown ();

 

 

(2)用USBD 的lisbdHedAttaeh()函数来把至少一个HCD连接到USBD上。这一过程既可以在VxWorks启动时,也可以在运行时把HCD 连接到USBD 上去。后一种机制可以支持“热插拔”,而不用象前一种那样需要重新启动。

 

2 HCD的连接(attaching)与断开(detaching)

当HCD连接到USBD 时,调用者为usbdHedattaeh函数传递HCD执行入口(表HCD_EXEC_FUNC)和HCD连接参数(HCD attach parameter)。USBD用HCD FNC ATYACH 服务请求依次激活HCD的执行入口,传递同样的HCD attach参数。

需要强调虽然可以改变用HCD定义的参数,但是最好不应该有所改变。对于WindRiver提供的UHCI和OHCI的HCD,HCI attach参数是一个指向结构PCI_CFG_HEADER (定义在pciConstants.h) 的指针。

 

该结构用UHCI和OHCI主控制器的PCI配置头来初始化,而HCD用这个结构中的信息来定位,管理特定的主控制器。典型的,调用者用usbPeiClassFind ()和usbPciConfigHeaderGet()来得到想要的主控制器的PCI配置头- 这两个函数定义在usbPciLib 中(stubUsbarchPciLib.h中)。如果有UHCI或OHCI要连接到USBD,就要调用这些函数来获得每一个主控制器的PCI_CFG_HEADER。然后利用usbdHedAttaeh来激活已鉴别出的每一个主控制器。

 

注意:底层BSP可能不支持USB的HCD断开,因为当中断向量表重新使能时,如果还应用的是过期的向量表,会导致错误。

 

//挂接过程

UINT8 busNo;

UINT8 deviceNo;

UINT8 funcNo;

PCI_CFG_HEADER pciCfgHdr; /* PCI_CFG_HEADER defined in

pciConstants.h */

GENERIC_HANDLE uhciAttachToken; /* GENERIC_HANDLE defined in

usbHandleLib.h */

/* Locate the first (0th) UHCI controller. UHCI_CLASS, etc., are defined

* in usbUhci.h. The functions usbPciClassFind() and

* usbPciConfigHeaderGet() are exported by usbPciLib.

*/

if (!usbPciClassFind (UHCI_CLASS, UHCI_SUBCLASS, UHCI_PGMIF, 0,

&busNo, &deviceNo, &funcNo))

{

/* No UHCI controller was found. */

return ERROR;

}

usbPciConfigHeaderGet (busNo, deviceNo, funcNo, &pciCfgHdr);

/* Attach the UHCI HCD to the USBD. The function usbHcdUhciExec() is

* exported by usbHcdUhciLib.

*/

if (usbdHcdAttach (usbHcdUhciExec, &pciCfgHdr, &uhciAttachToken) != OK)

{

/* USBD failed to attach to UHCI HCD. */

return ERROR;

}

/* Attachment is complete. */

 

//取消挂接

/* Detach the UHCI HCD from the HCD. */

usbdHcdDetach (uhciAttachToken);

/* Detach is complete! */

  

3 启动顺序

必须在所有USBD函数前执行函数usbdInitialize()。存在以下两种调用方式:

  (1)传统的“启动”初始化。执行顺序与其意义如下:

  a.usbdInitialize();

  b.usbdPciClassFind():定位一个USB主控制器;

  c.usbdPeiConfigHeaderGet():读USB主控制器配置头;

  d.usbdHedAttaeh():连接HCD,将其作为特定的主控制器:

  e.调用USB class driver初始化入口点;

  f.USB class driver调用usbdlnitialize()。

 

  (2)“热插拔”调用。执行顺序与其意义如下:

  Boot Code里调用:

  a.USB class driver初始化入口点;

  b.USB class driver调用usbdlnitialize();

 

  Hot-Swap code调用:
        c.Hot-Swap 鉴别USB主控制器的连接或断开;

  d.Usbdlnitialize();

  e.UsbdPciConfigHeaderGet():读USB主控制器配置头;

  f.UsbdHedAttaeh():连接HCD,将其作为特定的主控制器。

 

因为热插拔可以在任何时刻发生,所以USBD和其Client都必须被写成可以动态识别USB设备被插入还是被拔出。当主控制器连接到系统时,USBD 自动地鉴别与其相连的设备,并通知相关的client;同样,拔出设备时,也要通知相关设备。重要的是,USBD 的client,比如USB class driver,在client初始化时,从不设想特定的设备已经出现;而在其他时候,这些驱动随时检查设备是否已经连接到系统上。

 

4 总线任务

对每一个连接到USBD 的主控制器,例如插入或拔出设备,USBD都会产生一个总线任务,来监控总线事件。一般情况下,这些任务是休眠的(不消耗CPU),只有当USB hub报告它的一个端口有变化时,它们才被唤醒。每一个USBD总线任务有VxWorks任务名:UsbdBus。

 

虽然HCD委托USBD来管理,但有可能HCD 亲自监视主控制器事件。例如WindRiver提供了UHCI和OHCI的HCD来创造这样的任务。对于WindRiver的UHCI模块(usbHcdUheiLib),后台任务只是被周期地唤醒,目的是为了检查超时IRP(用一个中断来通知OHCI根hub发生改变)。

 

用以在USBD和USB之问进行通信的client模块,除了调用usbdlnitialize()外,必须调用usbClientRegister()使其在USBD注册。当一个client注册到USBD时,USBD把每一个以后将要用到的client的数据结构定位,并跟踪那个client的请求。

 

对于每一个client,在client注册过程中,USBD还创建了一个callback任务。在成功注册client后,USBD返回一个句柄USBD_CLIENT_HANDLE。以下对USBD的调用,将会用到这个句柄。当所有句柄都不需要时,可以调用usbdClientUnregister()来释放每一个client的数据结构和callback任务。注意:此时所有client要求的任务都会被取消。

 

例如:注册一个叫USBD_TEST的client,再注销。

  注册:usbdClientRegister("USBD_TEST,&usbdClientHandle);

  注销:usbdClientUnregister(usbdClientHandle);

 

5 client回调(callback)任务

USB操作是严格遵守时序的。例如为使中断传输和同步传输正确工作.需要依靠时钟中断。在一个有几个不同client出现的主系统中.总是有可能出现一个client打断其它client传输事件的发生。WindRiver USBD建议用client callback任务来解决这个问题。许多USB事件可以导致一个USB client的callback任务。例如, 每当USBD 完成USB IRP后,client的IRP callback函数被激活。同样,当USBD识别出一个动态连接事件后,会激活一个或更多的动态attach callback操作。但不是马上激活这些回调操作, 而是安排合适的相应的USBD client的回调任务来执行callback。

 

一般的情况下,每一个client的callback任务处于“休眠”态(阻塞态)。每一个client的callback,继承了usbdClientRegister()产生的VxWorks任务优先级。这确保了每一个callback按其client的任务优先级来执行,而且可以利用优先级来写client,保证对时间要求严格的USB传输。由于每一个client有它自己的callback任务,因此在callback期间,它们有很大的灵活性决定可以做什么。例如,允许在不破坏USBD或其它USBD client性能的条件下,使callback执行代码运行至阻塞态。

 

Client callback task有VxWorks任务名:tUsbdCln。

 

6 USBD内部Client

当第一次初始化USBD时,由USBD产生并注册一个内部client,以跟踪USB请求。

 

USBD 可以产生什么类型的USB请求呢? 所有USBD与USB设备的传输,均利用调用USBD client的形式来完成。例如, 当一个设备第一次连接到系统时.USBD用一个控制管道(control pipe) 自动地创建设备需要的所有的control pipe,即USBD client要用usbdPipeCreate()来创建一个与USB endpoint0通话的通道,然后所有USBD 内部、外部client通过这个管道来发送诸如usbdDescriptorGet()或usbdFeatureGet()等的函数,进行操作。

 

所以,USBD 的一个机制就是USBD 循环利用它自己的entry point,而内部chent跟踪这些请求。

 

7 动态连接的注册

每当一个特定类型的设备插入或拔出时,USBD client都通知上一层。利用调用usbdDynamicAttachRegister()操作,client可以指定一个callback操作,以便可以获取这样的通知。

 

USB设备类型用class,subclass,protocol来区别。标准的USB 类在usb.h 中定义为USB_CLASS_XXXX。Subclass和protocol根据class来定义, 因此这些常数根据特定的class在头文件中定义。

 

有时, 一个client当利用usbdDynamicAttachRegister()进行注册时,只对特定的class,subclass,protocol感兴趣。例如,USB键盘类驱动usbkeyboardLib, 注册了Human Device Interface (HID) 类,subclass 是USB_SUBCLASS_HID_ BOOT,protocol是USB_PROTOCOL_HID_BOOT _KEYBOARD。通过callback机制的响应,每当一个设备完全符合这样的标准, 从设备上插入或拔出时,SBD便通知给keyboard class driver。而在其它情况下,client关注的范围更广泛了。常量USBD_NOTIFY(定义在usbdLib.h)可以替代任意的class,subclass,protocol。例如,USB打印机USB驱动,usbPrinterLib, 其class等于USB_CLASS_PRINTER,subclass 等于USB_SUBCLASS_PRINTER (usbPrinter.h),protocol等于USBD_ NOTIFY_ ALL。典型的,当一个client只调用一次usbdDynamicAttachRegister()时,对一个client能拥有的并发通知请求数目没有限制。

 

8 Node ID

USB设备一般用USBD_NODE_ID来区别。从其作用来看,USBD_ NODE_ ID 是USBD 用来跟踪一个设备的句柄。它与USB设备真正的USB地址无关。这表明client并不真正关心想要了解设备是物理上与哪一个USB主控制器相连。应用为每个设备抽象定义的Node ID, 使client可以不用考虑物理设备的连接细节以及USB地址分配, 并允许USBD 在其内部对这些进行详细的管理。

当一个client通知有一个设备连接或断开时,USBD经常通过USBD_NODE_ID来定位设备。同样,当一个client想通过USBD与一个特定的设备通信时,它必须向USBD传递那个设备的USBD_NODE_ID。

 

9 总线编号(bus enumeration)操作

usbdLib模块提供了usbdBusCountGet(),usbdRootNodeldGet(),usbdHubPortCountGet(),usbdNodldGet()操作。它们被一起称作总线编号操作。它们使USBD Client对连接到每一个主控制器上的设备进行编号。

这些操作对于诊断程序和测试工具很有用,例如usbTool(WindRiver提供的一个测试工具)。但是,利用它们编号之后,调用者无法知道USB的拓扑结构是否变化。因此, 建议USB class driver的开发者不要用这些操作。

 

10 数据传输

一旦client配置完成一个设备,就开始利用USBD提供的管道和传输功能与设备进行数据交换。为了和设备交换数据,client必须先创建管道。作为结果,USBD得到了一个USBD_PIPE_HANDLE,它被用于随后对这个管道的所有client操作。

当client企图创建一个管道时,USBD会检查是否有足够的可用带宽。对于中断和同步传输,带宽限制是必需的。USBD不允许把90% 以上的可用带宽分配给中断和同步管道;而对于控制和块传输,则没有带宽的限制。同时,保证至少10% 的带宽用于控制传输,对块传输则不保证会提供任何可用带宽。

 

数据传输的具体过程:

(1)创建pipe :usbdPipeCreate(usbdClient Handle,nodeld,endpoint,configvalue,interface,  

USB_XFRTYPE_BULK,USB_ DIR_OUT,maxPacketSize,0,0,&outPipeHandle);

(2)定义callback:ourlrpCallback(pvoid P);

(3)初始化IRP的数据结构;

(4)发送IRP:usbdTransfer(usbdChentHandle,outPipeHandle,&irp)。

 

 

4、 VxWorks下USB驱动编写流程

4.1 生成bootable工程,添加以下组件(根据不同硬件定制):

hardware->buses->USB Hosts->OHCI

hardware->buses->USB Hosts->USB Host Stack

hardware->buses->USB Hosts->USB Host Init->OHCI Init

hardware->buses->USB Hosts->USB Host Init->USB Host Stack Init

此时编译后的内核在启动时如果出现Attach OHCI...OK,表示USB协议栈加载成功。

 

4.2 修改和检查config.h

/* USB Stuff */

#define INCLUDE_USB

#define INCLUDE_OHCI

#define INCLUDE_OHCI_INIT

#define INCLUDE_USB_INIT

#define INCLUDE_USB_MOUSE

#define INCLUDE_USB_KEYBOARD

#define INCLUDE_USB_MS_BULKONLY

#define INCLUDE_USB_MS_CBI

#define INCLUDE_USB_PRINTER

#define INCLUDE_USB_SPEAKER

 

//新增加,根据系统不同配制,可能不同

//IO 地址相关,该系统不采用动态PCI查找和影射

#define SL811H_IO_ADDR SL811H_MEMORY_START

#define SL811H_IO_ADDR_DATA ((SL811H_MEMORY_START) | 0x800000)

 

//中断相关

#define SL811H_INT_LVL INT_LVL_EXT_IRQ_0 /* PPC405GP UIC Interrupt 25 - External IRQ 0 */

#define SL811H_INT_VEC INT_VEC_EXT_IRQ_0 /* PPC405GP UIC Interrupt 25 - External IRQ 0 */

 

4.3 wrSbc405gp.h(特定系统配制文件)

#define SL811H_MEMORY_START  0x70000000

#define SL811H_MEMSIZE         0x10000000

 

4.4 sysLib.c,增加MMU属性配制

    ,{

    (void *) SL811H_MEMORY_START,

    (void *) SL811H_MEMORY_START,

    SL811H_MEMSIZE,

    VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE | VM_STATE_MASK_CACHEABLE | VM_STATE_MASK_GUARDED,

    VM_STATE_VALID      | VM_STATE_WRITABLE      | VM_STATE_CACHEABLE_NOT  | VM_STATE_GUARDED

    }

 

 

 

5.调用流程

5.1 USB Init

///////////////////////////////////////////////////////////////////////////////////////////

UINT16 cmdUsbInit()

{

    UINT16 usbdVersion;

    char usbdMfg [USBD_NAME_LEN+1];

 

    UINT16 s;

 

    /* if already initialized, just show a warning */

    if (initialized)

       {

              printf( "Already initialized.\n");

              return RET_CONTINUE;

       }

 

    /* Initialize the USBD */

    s = usbdInitialize ();

    printf( "usbdInitialize() returned %d\n", s);

    if (s == OK)

       {

           /* Register ourselves with the USBD */

           s = usbdClientRegister (PGM_NAME, &usbdClientHandle);

           printf( "usbdClientRegister() returned %d\n", s);      

           if (s == OK)

           {             

               printf( "usbdClientHandle = 0x%x\n", (UINT32) usbdClientHandle);

       

               /* Display the USBD version */      

               if ((s = usbdVersionGet (&usbdVersion, usbdMfg)) != OK)

             {

                    printf( "usbdVersionGet() returned %d\n", s);

             }

               else

             {

                    printf( "USBD version = 0x%5.4x\n", usbdVersion);

                    printf( "USBD mfg = '%s'\n", usbdMfg);

             }

       

               if (s == OK)

             initialized = TRUE;       

           }

       }

   

    if (s != OK)

       {

              printf( "initialization failed\n");

       }

 

    return RET_CONTINUE;

}

/////////////////////////////////////////////////////////////////////////////////////////////

 

5.2执行HCD挂接

SL811_IO_CFG sl811IOCfg = {

SL811H_IO_ADDR,

SL811H_IO_ADDR_DATA,

SL811H_INT_VEC,

SL811H_INT_LVL

};

 

进入usbdHcdAttach,

 

5.3 setups the expansion bus access profile.(硬件单板的总线连接方式不同而不同)

 

5.4硬件相关寄存器初始化(因为硬件不同,所以相关过程不一样)

 

5.5初始化中断处理进程

        (pHost->intThread =

         taskSpawn ("tSl811Int", 0, 0, 0x4000,

                    (FUNCPTR) intThread, (int) pHost,

                    0, 0, 0, 0, 0, 0, 0, 0, 0))==ERROR

 

5.6 挂接中断

    *pResult = intConnect ((VOIDFUNCPTR *)INUM_TO_IVEC (pHost->sl811CfgHdr.intVec), \

                          routine, (int)arg); \

    开中断;

有必要的话,复位硬件(大部分时候如此)

 

6:数据发送和接受过程

6.1写数据过程

A:bulkWrite

LOCAL UINT16 bulkWrite

    (

    long  bytes,

    FILE *fin,                 /* stream for input (if any) */

    FILE *fout                /* stream for output (if any) */

    )

   

    {

    /* Initialize the BULK class driver */

    char    filePath[1000];

    char    buffer[BULK_DRIVE_BUFFER_SIZE];

    UINT8  *ptr;

    int     fd;

    UINT32  i;

    UINT8   j=1,k=1;

    UINT32  len=0;

 

    sprintf(filePath,"%sbulkFile",BULK_DRIVE_NAME);

    remove(filePath);

    fd = open(filePath, O_CREAT | O_WRONLY, 0);

 

    if (fd == ERROR)

              fprintf (fout, "bulkWrite() error opening %s\n",filePath);

    else

              fprintf (fout, "bulkWrite() %s opened for write\n",filePath);

 

    ptr = (UINT8 *) buffer;

 

    for (i=1; i<=bytes; i++)

    {

        *ptr++ = j++;

        len++;

       

        if ( (i%BULK_DRIVE_BUFFER_SIZE)==0 || i==bytes )

        {

            if (len != write(fd,buffer,len))

            {

                fprintf (fout, "bulkWrite() error writing %u to %s\n",

                         i,filePath);

                close(fd);

                return ERROR;

            }

           

            if (i%BULK_DRIVE_DISPLAY_INTERVAL == 0)

            {

                fprintf (fout, "bulkWrite() wrote %u of %u bytes\n",

                         i,bytes);

            }

           

            len = 0;

            k++;

            j = k;

            ptr = (UINT8 *) buffer;

        }

    }

 

    close(fd);

    fprintf (fout, "bulkWrite() wrote %u bytes to %s\n",i-1,filePath);

 

    return RET_CONTINUE;

}

 

B:读数据过程

LOCAL UINT16 bulkRead

    (

    long  bytes,

    FILE *fin,                 /* stream for input (if any) */

    FILE *fout                /* stream for output (if any) */

    )

   

    {

    /* Initialize the BULK class driver */

    char    filePath[1000];

    char    buffer[BULK_DRIVE_BUFFER_SIZE];

    UINT8  *ptr;

    int     fd;

    int     i;

    UINT8   j=1,k=1;

    int     len;

    UINT32  totLen=0;

 

    sprintf(filePath,"%sbulkFile",BULK_DRIVE_NAME);

 

    fd = open(filePath, O_RDONLY, 0);

 

    if (fd == ERROR)

       fprintf (fout, "bulkRead() error opening %s\n",filePath);

    else

       fprintf (fout, "bulkRead() %s opened for read\n",filePath);

 

    ptr = (UINT8 *) buffer;

 

    while ((len=read(fd,buffer,BULK_DRIVE_BUFFER_SIZE)) > 0)

        {

        for (i=0; i<len; i++)

            {

            totLen++;

            if (*ptr++ != j++)

                {

                fprintf (fout, "bulkRead() error %u != %u at %u from %s\n",

                         *(ptr-1),j-1,totLen,filePath);

                close(fd);

                return ERROR;

                }

            if (totLen%BULK_DRIVE_DISPLAY_INTERVAL == 0)

                {

                fprintf (fout, "bulkRead() verified %u of %u bytes\n",

                         totLen,bytes);

                }

            }

        k++;

        j = k;

        ptr = (UINT8 *) buffer;

        }

 

    close(fd);

 

    if (totLen==bytes)

        {

        fprintf (fout, "bulkRead() verified %u bytes from %s\n",

                 totLen,filePath);

        }

    else

        {

        fprintf (fout, "bulkRead() error reading at %u of %u in %s\n",

                 totLen,bytes,filePath);

        return ERROR;

        }

 

    return RET_CONTINUE;

    }

 

7:USB代码的注意点

这一周主要在研究USB代码的架构,发现一些问题:

(1)      数据是以祯的方式传输的,数据包的开头是一段同步字段,同步字段的结尾是PID开始的标志,包结束是以EOP为结束的标志.

(2)      PE通过读出CSR以及Buffer里面的状态,来决定数据传输的可靠性,并不是PE来控制CSR

(3)      仲裁器仲裁总线传输和DMA传输, CSR[15]是DMA使能位,但是发现找不到DMA request 的触发,Wishbone部分并没有对这个信号进行相应的处理

(4)      从主机发过来的token会有两个token寄存器进行寄存,token的每个位都有相应的含义

(5)      主机每秒发送的祯的个数,祯在Top层有一个祯的计数器

(6)      在代码中,要保持信号的稳定性,往往都是采用计数器的方法,计数到一定时间后,再采样一次,这样来保持数据的稳定性

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
相关文章
|
7月前
|
Linux 编译器 测试技术
探索Linux设备树:硬件描述与驱动程序的桥梁
探索Linux设备树:硬件描述与驱动程序的桥梁
572 0
|
数据采集 Shell 芯片
vxworks的pci设备驱动调试
vxworks的pci设备驱动调试
724 0
vxworks的pci设备驱动调试
|
XML 芯片 数据格式
可编程 USB 转串口适配器开发板芯片的驱动文件
芯片驱动文件的结构较为简单,分为芯片说明、描述部分和测试指令部分,芯片描述部分包括作者信息、芯片说明、数据手册名称等,按照实际情况修改即可,下面重点说明测试指令部分。
可编程 USB 转串口适配器开发板芯片的驱动文件
|
XML 芯片 数据格式
可编程 USB 转串口适配器开发板芯片驱动文件说明
芯片选择下拉框内列出的每一个备选芯片的驱动文件和数据手册位于S2STool 工具文件夹中的chips 文件夹内,每一个芯片需要 1 个驱动文件和 1 个数据手册文件,用户可自行打开编辑,或者创建新的芯片驱动文件。 芯片驱动文件为 xml 格式,需要手工修改或者创建,芯片数据手册一般来自于网络,下载后复制到 chips 文件夹内即可。
可编程 USB 转串口适配器开发板芯片驱动文件说明
|
Linux
Linux串口驱动程序(3)-打开设备
Linux串口驱动程序(3)-打开设备先来分析一下串口打开的过程: 1、用户调用open函数打开串口设备文件;2、在内核中通过tty子系统,把open操作层层传递到串口驱动程序中;3、在串口驱动程序中的xx_open最终实现这个操作。
1148 0