Log4J引起的程序“装死”

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介:

问题起因

依然是在使用GemFire的集群中,我们发现偶尔会出现一些GemFire的Function执行特别慢,并且超过了两分钟(为了保证数据的一致性,我们在写之前需要先拿一个Lock,因为不能每个Key都对应一个Lock,因而我们使用了Guava的Stripe Lock(关于Stripe Lock可以参考 这里 ),而且这个Lock本身我们指定了2分钟的超时时间,因而如果写超过两分钟,我们就会收到Exception)。这个问题其实已经困扰了我们好几年了,刚前段时间,我们发现长时间的Stop-The-World GC会引起这个问题,而且这种时候很多时候会引起那个节点从集群中退出,并不是所有的这种错误都有GC的问题,我特地查了GC的日志,有些这种写超过两分钟的情况下,GC一直处于非常健康的状态,而且查了GemFire的日志和我们自己的日志,也没有发现任何异常。由于我们每个数据保留两分份拷贝,也就是说每次数据写都要写两个节点,两分钟对CPU来说可以做太多的事情,因而只有IO才能在某些时候产生这种问题,在问题发生的时候也没有任何overflow数据,而且本地操作,即使对IO来说2分钟也是一个非常长的时间了,因而我们只能怀疑这是写另一个节点引起的,对另一个节点,它是在同一个Data Center中,而且基本是在同一个Chasis内部,因而它们之间小于1M的数据量通信也不太可能花去2分钟的时间,所以剩下的我们就只能怀疑网络的问题了,比如数据丢包、网络抖动、网络流量太大一起传输变慢等,但是我们没有找到任何相关的问题。所以我们很长一段时间素手无策,只能怪GemFire闭源,我们不知道这两分钟是不是GemFire自己内部在做一些不为人知的事情,因而太忙了而每来得及处理我们的写请求。虽然我一直觉得不管在处理什么炒作,两分钟都没有响应根本无法解释的通,更何况GemFire节点之间并没有报告有任何异常,或者像以前发现的一个节点向Locator举报另一个节点没有响应的问题,Locator自己也能很正常的向那个节点发送新的成员信息(View),因而看起来向是这个节点虽然花了两分钟多来写一个数据,但是它还是有响应的,有点“假死”的赶脚。

问题发现

这个问题这么几年以来时不时的就会发生,而且因为以前花的时间太多了,而且也没有找到任何出错的地方,现在索性不去花太多时间在上面了,更何况这个它很长时间才发生一次,并且今年以来就一直没发生过,直到前几周出现一次,我有点不信邪的重新去看这个问题,依然没有找到任何可疑的地方,GC日志、应用程序日志、GemFire自己的日志、网络、CPU使用情况等所有的都是正常的,除了问题发生的那个时刻,应用程序没有任何日志,另外在问题发生之前出现过Log4J日志文件的Rolling(我们使用RollingFileAppender,并且只保留20个日志文件),但是Log4J日志文件Roll的日志出现了断结,在开始要Roll到真正完成Roll中间还有几行GemFire自身的日志,此时我并没有觉得这个是有很大问题的,因为我始终觉得Log4J除了它自己提到平均对性能有10%的影响以外,它就是一个简单的把日志写到文件的过程,不会影响的整个应用程序本身,因为它太简单了,直到今天这个问题再次出现,依然没有任何其他方面的收获,所有的地方都显示正常状态,甚至我们之前发现的网卡问题今天也没有发生,然而同样是出问题的两分钟没有出现应用程序日志,日志文件Roll的日志和上次类似,开始Roll到结束出现GemFire日志的交叉。
最近一次发生的日志
[info 2015/08/12 01:56:07.736 BST …] ClientHealthMonitor: Registering client with member id …
log4j: rolling over count=20971801
log4j: maxBackupIndex=20
[info 2015/08/12 01:56:12.265 BST …] ClientHealthMonitor: Unregistering client with member id …
……
[info 2015/08/12 01:56:23.773 BST …] ClientHealthMonitor: Registering client with member id …
log4j: Renaming file logs/….log.19 to logs/….log.20
一周前发生的日志
[info 2015/08/04 01:43:45.761 BST …] ClientHealthMonitor: Registering client with member id …
log4j: rolling over count=20971665
log4j: maxBackupIndex=20
……
[info 2015/08/04 01:45:25.506 BST …] ClientHealthMonitor: Registering client with member id …
log4j: Renaming file logs/….log.19 to logs/….log.20
看似这个是一个规律(套用同事的一句话:一次发生时偶然,两次发生就是科学了)。然而此时我其实依然不太相信Log4J是“凶手”,因为我一直觉得Log4J是一个简单的日志输出框架,它要是出问题也只是它自己的问题,是局部的,而这个问题的出现明显是全局的,直到我突然脑子一闪而过, 日志打印的操作是synchronized,也就是说在日志文件Roll的时候,所有其它需要打日志的线程都要等待直到Roll完成,如果这个Roll过程超过了2分钟,那么就会发生我们看到的Stripe Lock超时,也就是发生了程序“假死”的状态。重新查看Log4J打印日志的方法调用栈,它会在两个地方用synchronized,即同一个Category(Logger)类实例:
     public  void callAppenders(LoggingEvent event) {
         int writes = 0;
         for(Category c =  this; c !=  null; c=c.parent) {
             //  Protected against simultaneous call to addAppender, removeAppender,
             synchronized(c) {
                 if(c.aai !=  null) {
                    writes += c.aai.appendLoopOnAppenders(event);
                }
                 if(!c.additive) {
                     break;
                }
            }
        }
。。。
    }
以及同一个Appender在doApppend时:
     public  synchronized  void doAppend(LoggingEvent event) {
      。。。
       this.append(event);
    }
而Roll的过程就是在append方法中,进一步分析,在下面两句话之间,他们分别花费了超过100s和超过11s的时间:
log4j: maxBackupIndex=20
。。。
log4j: Renaming file logs/….log.19 to logs/….log.20
而这两句之间只包含了两个File.exists(),一个File.delete(),一个File.rename()操作:
     public  void rollOver() {
      。。。
       if(maxBackupIndex > 0) {
         //  Delete the oldest file, to keep Windows happy.
        file =  new File(fileName + '.' + maxBackupIndex);
         if (file.exists())
            renameSucceeded = file.delete();
         for ( int i = maxBackupIndex - 1; i >= 1 && renameSucceeded; i--) {
            file =  new File(fileName + "." + i);
             if (file.exists()) {
                target =  new File(fileName + '.' + (i + 1));
                LogLog.debug("Renaming file " + file + " to " + target);
                renameSucceeded = file.renameTo(target);
            }
        }
      。。。
      }
    }

NFS简单性能测试和分析

因而我对NFS的性能作了一些简单测试:
只有一个线程时,在NFS下rename性能:
1 file:                    3ms
10 files:                48ms
20 files:                114ms
相比较,在本地磁盘rename的性能:
1 file:                    1ms
3 files:                  1ms
10 files:                3ms
对NFS和本地磁盘写的性能(模拟日志,每行都会flush):

 

NFS

LOCAL

1 writer, 11M

443ms

238ms

1 writer, 101M

2793ms

992ms

10 writers, 11M

~4400ms

~950ms

10 writers, 101M

~30157ms

~5500ms


一些其他的统计:
100同时写:
Create 20 files spend: 301ms
Renaming 20 files spends: 333ms
Delete 20 files spends: 329ms
1000同时写:
Create 20 files spend: 40145ms
Renaming 20 files spends: 39273ms
而在1000个同时写的过程中,重命名:
Rename file: LogTest1.50 take:  36434ms
Rename file: LogTest1.51 take:  39ms
Rename file: LogTest1.52 take:  34ms
也就是说在这个模拟过程中,一个文件的rename超过36s,而向我们有十几台机器同时使用相同的NFS,并且每台机器上都跑二三十个程序,如果那段时间同时有上万个的日志写,可以预计达到100s情况是可能发生的。
关于NFS性能的问题,在《构建高性能WEB站点》的书(330页)中也有涉及。简单的介绍,NFS由Sun在1984年开发,是主流异构平台实现文件共享的首选方案。它并没有自己的传输协议,而是使用RPC(Remote Procedure Call)协议(应用层),RPC协议默认底层基于UDP传输,但是自己实现在丢包时的重传机制,而且NFS服务器采用多进程模型,默认进程为4,但是一般都会调优增加服务进程数,然而“不管怎么对NFS进行性能优化,NFS注定不适合作为I/O密集型文件共享方案,但可以作为一般用途,比如提供站点内部的资源共享,它的优势在于容易搭建,而且可以减少不必要的数据冗余。”
可以使用命令:“nfsstat -c”获取对NFS服务器的操作的简单统计,具体可以参考《构建高性能WEB站点》的相关章节,里面还有更详细的对NFS服务器性能的测试。

总结

从这个事件我总结了两件事情:
1. 日志的影响可能是全局性的,因而要非常小心,一个耗时的操作可能引起程序的“假死”,因而要非常小心。
2. 虽然把日志打印在NFS上,对大量的日志文件查找会方便很多,但是这是一个很耗性能的设计,特别是当大量的程序共享这个NFS的时候,因而要尽量避免。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
Java Maven
Maven:程序包org.apache.log4j不存在问题处理
1 2 log4j 3 log4j 4 1.2.15 5 6 7 javax.
4495 0
|
Java C语言 数据格式
程序日志输出实现-Log4j
学习开发的过程中,我们都应该用过System.out.println();来做一些调试工作,有时候确实很有用有没有。但是这种简单粗暴的方式让程序中到处存在着sysout。这种方式难免会有性能的影响,维护时也要对其大量的修改工作,并且输出的信息错乱复杂。
|
2月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
455 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
3月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
361 3
|
4月前
|
Java
日志框架log4j打印异常堆栈信息携带traceId,方便接口异常排查
日常项目运行日志,异常栈打印是不带traceId,导致排查问题查找异常栈很麻烦。
|
5月前
|
XML Java Maven
log4j 日志的简单使用
这篇文章介绍了Log4j日志框架的基本使用方法,包括在Maven项目中添加依赖、配置`log4j.properties`文件以及在代码中创建和使用Logger对象进行日志记录,但实际打印结果中日志级别没有颜色显示。
log4j 日志的简单使用
|
5月前
|
XML Java Maven
Spring5入门到实战------16、Spring5新功能 --整合日志框架(Log4j2)
这篇文章是Spring5框架的入门到实战教程,介绍了Spring5的新功能——整合日志框架Log4j2,包括Spring5对日志框架的通用封装、如何在项目中引入Log4j2、编写Log4j2的XML配置文件,并通过测试类展示了如何使用Log4j2进行日志记录。
Spring5入门到实战------16、Spring5新功能 --整合日志框架(Log4j2)
|
5月前
|
存储 消息中间件 监控
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统ELK、日志收集分析
Java日志详解:日志级别,优先级、配置文件、常见日志管理系统、日志收集分析。日志级别从小到大的关系(优先级从低到高): ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF 低级别的会输出高级别的信息,高级别的不会输出低级别的信息
|
6月前
|
Java 测试技术 Apache
《手把手教你》系列基础篇(八十六)-java+ selenium自动化测试-框架设计基础-Log4j实现日志输出(详解教程)
【7月更文挑战第4天】Apache Log4j 是一个广泛使用的 Java 日志框架,它允许开发者控制日志信息的输出目的地、格式和级别。Log4j 包含三个主要组件:Loggers(记录器)负责生成日志信息,Appenders(输出源)确定日志输出的位置(如控制台、文件、数据库等),而 Layouts(布局)则控制日志信息的格式。通过配置 Log4j,可以灵活地定制日志记录行为。
68 4
|
6月前
|
运维 Java Apache
Java中的日志框架:Log4j与SLF4J详解
Java中的日志框架:Log4j与SLF4J详解