全面提升,阿里云 Docker / Kubernetes(K8S) 日志解决方案与选型对比

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 日志服务再次升级Kubernetes(K8S)的日志解决方案。1分钟内即可完成整个集群部署,支持动态扩容,提供采集宿主机日志、容器日志、容器stdout等所有数据源的一站式采集。

背景

众所周知,Docker很火,Docker中Kubernetes(简称K8S)最火。相对物理机、VM,Docker提供了更加简单、轻量、高性价比的部署与运维方法;而K8S在Docker之上,更进一步提供了对管理基础设施的抽象,形成了真正意义上的一站式部署与运维方案。

K8S提供了强有力工作调度、水平扩展、健康监测、维护高可用性等能力,同时提供了网络、文件系统的抽象与管理,所以对于已有应用上K8S或者基于K8S部署应用十分便捷。但这里有一部分令开发和运维人员比较头疼--日志采集。

难点分析

基于VM或者物理机部署的应用,日志采集相关技术都比较完善,有比较健全的Logstash、Fluentd、FileBeats等。但在Docker中,尤其在K8S中,日志采集并没有很好的解决方案,主要原因如下:

  1. 采集目标多:需要采集宿主机日志、容器内日志、容器stdout。针对每种数据源都有对应的采集软件,但缺乏一站式解决方案。
  2. 弹性伸缩难:K8S是一个分布式的集群,服务、环境的弹性伸缩对于日志采集带来了很大的困难,采集的动态性以及数据完整性是非常大的挑战。
  3. 运维成本大:现有的方案只能使用多种软件组合采集,各个软件组装起来的系统稳定性难以保障,且缺乏中心化的管理、配置、监控手段,运维负担巨大。
  4. 侵入性高:Docker Driver扩展需要修改底层引擎;一个Container对应一个采集Agent又会产生资源竞争和浪费。
  5. 采集性能低:正常情况下一个Docker Engine会运行数十个甚至数百个Container,此时开源Agent日志采集性能以及资源消耗十分堪忧。

基于阿里巴巴多年来容器服务日志采集的经验积累,并结合阿里云Kubernetes内测以来广大用户的反馈与诉求,现在,日志服务为K8S带来真正意义上的一站式日志解决方案。

技术方案

架构简介

image

如上图所示,我们只需要在Kubernetes集群中的每个节点上部署一个Logtail的容器,即可实现该节点上宿主机日志、容器日志、容器stdout等所有数据源的一站式采集。我们针对K8S提供了DaemonSet部署模板,1分钟内即可完成整个集群部署,并且后续集群动态伸缩无需对采集做任何二次部署。具体请参见使用方式章节。

日志服务客户端Logtail目前已有百万级部署,每天采集上万应用、数PB的数据,历经多次双11、双12考验。相关技术分享可以参见文章:多租户隔离技术+双十一实战效果Polling + Inotify 组合下的日志保序采集方案

依托阿里云日志服务强大的功能,对于采集到的日志数据,我们提供:

  1. 上下文查询,从茫茫数据中快速定位异常数据,并支持定位异常所在Container/Pod的上下文日志
  2. 实时的海量数据分析,1秒即可完成1亿条数据的统计分析
  3. 自带报表、告警功能,老板、开发、运维全搞定
  4. 流计算对接:storm、flink、blink、spark streaming等等都支持
  5. 外接可视化:Grafana、DataV轻松对接
  6. 日志归档投递:支持投递OSS归档存储,也支持投递MaxCompute进行离线分析

采集方案优势

关于日志服务整体的优势这里不再赘述,本文主要探讨日志服务Kubernetes采集方案的相关优势。这里我们主要总结了以下几点:
image

方案对比

相对Logstash、Fluentd主流日志采集方式,对比如下:
image

使用方式

image

部署K8S的日志采集只需分为3个步骤,1分钟内即可完成集群部署(详细帮助文档参见K8S采集帮助),这可能是你见过的最简单的K8S日志采集部署方案:

  1. 部署Logtail的DaemonSet。体力消耗:一条wget名,vi 修改3个参数,执行一条kubectl命令
  2. 日志服务控制台创建自定义标识机器组(后续集群动态伸缩无需额外操作)。体力消耗:web控制台点击几次,输入一个ID
  3. 日志服务控制台创建采集配置(所有采集均为服务端配置,无需本地运维)。体力消耗:stdout采集 web控制台点击几次;文件采集 web控制台点击几次,输入2个path

核心技术简介

自定义标识机器组

日志采集支持K8S弹性伸缩的关键就是Logtail的自定义标识机器组。通常采集Agent远程管理的方案都以IP或者hostname作为标识,此方案在集群规模较小以及环境变化性不强的情况下较为适用,当机器规模扩大、弹性伸缩成为常态时运维成本承指数级升高。

基于集团内数年来的Agent运维经验总结,我们设计了一种灵活性更高、使用更加便捷、耦合度更低的配置&机器管理方式:

image

  1. 机器组除支持静态ip设置外,也支持自定义标识的方式:所有Logtail只要定义了该标识则自动关联到对应的机器组。
  2. 一个Logtail可属于多个机器组,一个机器组可包含多个Logtail,实现Logtail与机器组的解耦。
  3. 一个采集配置可应用到多个机器组,一个机器组可关联多个采集配置,实现机器组与采集配置的解耦。

以上概念映射到K8S中,可实现各种灵活的配置:

  1. 一个K8S集群对应一个自定义标识的机器组。同一集群的Logtail使用相同配置,K8S集群伸缩时对应Logtail的DaemonSet自动伸缩,Logtail启动后立即就会获取和该机器组关联的所有配置。
  2. 一个K8S集群中配置多种不同采集配置。根据不同Pod需求设置对应的采集配置,所有涉及容器采集的配置均支持IncludeLabelExcluseLabel过滤
  3. 同一配置可应用到多个K8S集群。如果您有多个的K8S集群,若其中有部分服务日志采集逻辑相同,您可以将同一配置应用到多个集群,无需额外配置。

容器自动发现

Logtail和很多软件(Logspout、MetricBeats、Telegraf等)一样内置了容器的自动发现机制。当前开源的容器自动发现均采用一次扫描+事件监听的方式,即:初次运行时获取当前所有的容器信息,后续监听docker engine的事件信息,增量更新信息。

此种方式效率相对最高,但有一定概率遗漏部分信息:

  1. 获取所有容器信息到docker engine事件监听建立期间的这部分的增量信息会丢失
  2. 事件监听可能会因为某些异常情况而终止,终止后到监听重新建立期间的增量信息会丢失

image

考虑以上问题,Logtail采用了事件监听与定期全量扫描的方式实现容器的自动发现:

  1. 首先注册监听事件,其次再全量扫描
  2. 每隔一段时间执行一次全量扫描,全量更新meta信息(时间间隔高到对docker engine压力无影响)

容器文件自动渲染

容器日志采集只需要配置容器内的文件路径,并且支持各种采集模式:极简、Nginx模板、正则、分隔符、JSON等。相对传统的绝对路径采集,容器内日志采集动态性极强,为此我们专门实现了一套容器路径的自动匹配与配置渲染方案:

image.png

  1. Logtail会根据配置的容器路径,查找容器对应路径在宿主机上的映射关系
  2. 根据宿主机路径以及容器的元数据信息(container name、pod、namespace...)渲染出正常的采集配置
  3. Logtail文件采集模块加载渲染的配置并采集数据
  4. 当容器销毁时删除相应渲染的配置

可靠性保证

日志采集中的可靠性保证是非常重要也非常困难的工作。在Logtail的设计中,进程退出、异常终止、程序升级被认为是常态,在这些情况发生时Logtail需尽可能保证数据的可靠性。针对容器数据采集的动态特点,Logtail在之前可靠性保证的基础上,新增了容器标准输出以及容器文件的checkpoint维护机制

容器标准输出checkpoint管理

  1. 容器stdout和stderr的checkpoint独立保存
  2. checkpoint保存策略:定期dump所有容器当前的checkpoint;配置更新/进程退出时强制保存
  3. 配置加载时,默认从checkpoint处开始采集,若无checkpoint,则从5秒前采集
  4. 考虑到配置删除时并不会删除checkpoint,后台定期清除无效checkpoint

容器文件checkpoint管理

  1. 除文件采集的checkpoint需保存外,还需保存容器meta的映射关系
  2. checkpoint加载前需提前加载容器与文件之间的映射关系
  3. 考虑到停止期间无法感知容器状态变化,所以每次启动时会渲染所有当前的配置。Logtail保证多次加载同一容器配置的幂等性。

总结

阿里云日志服务提供的解决方案完美地解决了K8S上日志采集难的问题,从之前需要多个软件、几十个部署流程精简到1款软件、3个操作即可轻松上云,让广大用户真正体验到一个字:爽,从此日志运维人员的生活质量大大提高。

目前Logtail除支持宿主机文件、容器文件、容器stdout采集外,还支持以下多种采集方式(这些方式K8S中均支持):

  1. syslog采集
  2. Mysql binlog采集
  3. JDBC采集
  4. http采集

此外,Logtail即将推出Docker Event、Container Metric采集方式,敬请期待!

同志们有更多日志服务相关需求或问题请加钉钉群联系:

扫我进群

备注:本文作者元乙,点击移步原文链接

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
6天前
|
供应链 安全 Cloud Native
阿里云飞天企业版获【可信云·容器平台安全能力】先进级认证
阿里云飞天企业版容器系列产品获中国信息通信研究院【可信云·容器平台安全能力】先进级认证,这是飞天企业版容器产品获得《等保四级PaaS平台》和《 云原生安全配置基线规范V2.0》之后,本年度再一次获得行业权威认可,证明飞天企业版的容器解决方案具备符合行业标准的最高等级容器安全能力。
阿里云飞天企业版获【可信云·容器平台安全能力】先进级认证
|
17天前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
90 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
1天前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
24 10
|
14天前
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
79 19
|
15天前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
14天前
|
存储 监控 安全
网络安全视角:从地域到账号的阿里云日志审计实践
日志审计的必要性在于其能够帮助企业和组织落实法律要求,打破信息孤岛和应对安全威胁。选择 SLS 下日志审计应用,一方面是选择国家网络安全专用认证的日志分析产品,另一方面可以快速帮助大型公司统一管理多组地域、多个账号的日志数据。除了在日志服务中存储、查看和分析日志外,还可通过报表分析和告警配置,主动发现潜在的安全威胁,增强云上资产安全。
|
25天前
|
Kubernetes 应用服务中间件 nginx
二进制安装Kubernetes(k8s)v1.32.0
本指南提供了一个详细的步骤,用于在Linux系统上通过二进制文件安装Kubernetes(k8s)v1.32.0,支持IPv4+IPv6双栈。具体步骤包括环境准备、系统配置、组件安装和配置等。
263 10
|
29天前
|
Kubernetes 算法 调度
阿里云 ACK FinOps成本优化最佳实践
本文源自2024云栖大会梁成昊演讲,讨论了成本优化策略的选择与实施。文章首先介绍了成本优化的基本思路,包括优化购买方式、调整资源配置等基础策略,以及使用弹性、资源混部等高级策略。接着,文章详细探讨了集群优化和应用优化的具体方法,如使用抢占式实例降低成本、通过资源画像识别并优化资源配置,以及利用智能应用弹性策略提高资源利用效率。
|
29天前
|
运维 Kubernetes Serverless
阿里云Argo X K8s玩转工作流引擎,实现大规模并行计算
本文基于2024云栖大会田双坤的演讲,介绍了Kubernetes作为云原生操作系统的角色及其在各类任务中的应用,重点探讨了Argo Workflows在Kubernetes上编排并行任务的能力。面对自建Argo Workflows的挑战,如稳定性、成本和安全性等问题,阿里巴巴云推出了全托管的Serverless Argo工作流,提供全托管、免运维、可观测和易集成的特点,显著提升了任务编排的效率和稳定性。适用于数据处理、科学计算、自动驾驶仿真等多个领域。
|
29天前
|
Kubernetes 容灾 调度
阿里云 ACK 高可用稳定性最佳实践
本文整理自2024云栖大会刘佳旭的演讲,主题为《ACK高可用稳定性最佳实践》。文章探讨了云原生高可用架构的重要性,通过Kubernetes的高可用案例分析,介绍了ACK在单集群高可用架构设计、产品能力和最佳实践方面的方法,包括控制面和数据面的高可用策略、工作负载高可用配置、企业版容器镜像服务高可用配置等内容,旨在帮助企业构建更加可靠和高效的应用运行环境。

相关产品

  • 容器服务Kubernetes版
  • 下一篇
    开通oss服务