MapReduce框架Mapper和Reducer类源码分析

简介: 一:Mapper类 在Hadoop的mapper类中,有4个主要的函数,分别是:setup,cleanup,map,run。代码如下: protected void setup(Context context) throws IOException, InterruptedEx...

一:Mapper类

在Hadoop的mapper类中,有4个主要的函数,分别是:setup,cleanup,map,run。代码如下:

  1. protected void setup(Context context) throws IOException, InterruptedException {
  2. // NOTHING
  3. }

  4. protected void map(KEYIN key, VALUEIN value,
  5.                      Context context) throws IOException, InterruptedException {
  6. context.write((KEYOUT) key, (VALUEOUT) value);
  7. }

  8. protected void cleanup(Context context) throws IOException, InterruptedException {
  9. // NOTHING
  10. }

  11. public void run(Context context) throws IOException, InterruptedException {
  12.     setup(context);
  13.     while (context.nextKeyValue()) {
  14.       map(context.getCurrentKey(), context.getCurrentValue(), context);
  15.     }
  16.     cleanup(context);
  17.   }
  18. }
由上面的代码,我们可以了解到,当调用到map时,通常会先执行一个setup函数,最后会执行一个cleanup函数。而默认情况下,这两个函数的内容都是nothing。因此,当map方法不符合应用要求时,可以试着通过增加setup和cleanup的内容来满足应用的需求。

二:Reducer类

在Hadoop的reducer类中,有3个主要的函数,分别是:setup,clearup,reduce。代码如下:
  1.   /**
  2.    * Called once at the start of the task.
  3.    */
  4.   protected void setup(Context context
  5.                        ) throws IOException, InterruptedException {
  6.     // NOTHING
  7.   }


  1.   /**
  2.    * This method is called once for each key. Most applications will define
  3.    * their reduce class by overriding this method. The default implementation
  4.    * is an identity function.
  5.    */
  6.   @SuppressWarnings("unchecked")
  7.   protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context
  8.                         ) throws IOException, InterruptedException {
  9.     for(VALUEIN value: values) {
  10.       context.write((KEYOUT) key, (VALUEOUT) value);
  11.     }
  12.   }


  1.   /**
  2.    * Called once at the end of the task.
  3.    */
  4.   protected void cleanup(Context context
  5.                          ) throws IOException, InterruptedException {
  6.     // NOTHING
  7.   }


在用户的应用程序中调用到reducer时,会直接调用reducer里面的run函数,其代码如下:
  1. /*
  2.    * control how the reduce task works.
  3.    */
  4.   @SuppressWarnings("unchecked")
  5.   public void run(Context context) throws IOException, InterruptedException {
  6.     setup(context);
  7.     while (context.nextKey()) {
  8.       reduce(context.getCurrentKey(), context.getValues(), context);
  9.       // If a back up store is used, reset it
  10.       ((ReduceContext.ValueIterator)
  11.           (context.getValues().iterator())).resetBackupStore();
  12.     }
  13.     cleanup(context);
  14.   }
  15. }


由上面的代码,我们可以了解到,当调用到reduce时,通常会先执行一个setup函数,最后会执行一个cleanup函数。而默认情况下,这两个函数的内容都是nothing。因此,当reduce不符合应用要求时,可以试着通过增加setup和cleanup的内容来满足应用的需求。

相关文章
|
3月前
|
SQL 分布式计算 Java
Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
55 3
|
3月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
129 3
|
4月前
|
分布式计算 数据库
Mapreduce中的Mapper&reducer
【9月更文挑战第19天】在 MapReduce 框架中,Mapper 和 Reducer 是处理大规模数据集的关键组件。Mapper 负责将输入数据分割成键值对,而 Reducer 则对这些键值对进行汇总处理,生成最终结果。两者通过并行处理和分布式计算协同工作,Mapper 将数据转换为键值对,Reducer 对相同键的值进行聚合。开发人员需实现相应接口并编写定制逻辑,以充分利用框架优势,处理大规模数据集并获得有价值的结果。
188 7
|
8月前
|
存储 分布式计算 监控
Hadoop【基础知识 01+02】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
352 2
|
4月前
|
分布式计算 资源调度 Hadoop
在YARN集群上运行部署MapReduce分布式计算框架
主要介绍了如何在YARN集群上配置和运行MapReduce分布式计算框架,包括准备数据、运行MapReduce任务、查看任务日志,并启动HistoryServer服务以便于日志查看。
84 0
|
5月前
|
缓存 分布式计算 Java
详细解读MapReduce框架中的分布式缓存
【8月更文挑战第31天】
67 0
|
7月前
|
存储 分布式计算 Hadoop
MapReduce编程模型——自定义序列化类实现多指标统计
MapReduce编程模型——自定义序列化类实现多指标统计
57 0
|
8月前
|
分布式计算 并行计算 搜索推荐
Hadoop MapReduce计算框架
【5月更文挑战第10天】HadoopMapReduce计算框架
66 3
|
8月前
|
分布式计算 并行计算 Java
【分布式计算框架】 MapReduce编程初级实践
【分布式计算框架】 MapReduce编程初级实践
241 2
|
8月前
|
分布式计算 监控 Hadoop
Hadoop【基础知识 02】【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】Hadoop【基础知识 02】【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
337 0