揭秘FaceBook Puma演变及发展——FaceBook公司的实时数据分析平台是建立在Hadoop 和Hive的基础之上,这个根能立稳吗?hive又是sql的Map reduce任务拆分,底层还是依赖hbase和hdfs存储

简介:

在12月2日下午的“大数据技术与应用”分论坛的第一场演讲中,来自全球知名互联网公司——FaceBook公司的软件工程师、研发经理邵铮就带来了一颗重磅炸弹,他将为我们讲解FaceBook公司的实时数据处理分析平台的核心——Puma的演进以及未来的发展思路。

  FaceBook公司自成立以来发展就非常迅猛,时至今日,每天都有数以万计的人活跃在FaceBook之上,这一庞大的用户群体吸引了大量的企业的注意力,他们希望通过FaceBook这一平台对自己的产品或服务进行营销,以精准找到自己的潜在用户。要精准找到自己的客户,必然要对FaceBook网站用户的实时信息进行分析,FaceBook公司提供的实时数据分析工具就凸显出重要作用。

邵铮:揭秘FaceBook Puma演变及发展

  据邵铮工程师介绍,FaceBook公司的实时数据分析平台是建立在Hadoop 和Hive的基础之上的,Hadoop Hive集群共有超过3000个节点,共同完成对数据的实时处理分析。如上图所示,数据流通过程涉及的环节较多,每个环节的延迟都会对数据的分析处理能力产生影响,为了最大地降低延迟,尽最大可能为各个用户提供实时查询结果,就要尽可能低地较少每个环节的延迟。

  邵铮工程师在本次技术课程中分享了两个关键之处,一是Scribe,另一个则是Hadoop下的由Facebook公司开发改良的Puma环节。

邵铮:揭秘FaceBook Puma演变及发展

  邵铮工程师给我们分享了现在Facebook公司所使用的Scribe,如上图所示。并重点给我们讲解了Puma的演进与未来的发展方向。

邵铮:揭秘FaceBook Puma演变及发展

  上图是邵铮工程师认为的Puma理想工作流程,但实际环境中因为各种因素的制约,实际上不太可能达到这一理想流程。

邵铮:揭秘FaceBook Puma演变及发展

  上图为Puma的第二个版本,Puma2的命名是为了方便记忆和说明。但据邵铮工程师介绍,Puma同样存在一些局限。他说,HBase的写入速度较快,但读取速度就相对较慢。

邵铮:揭秘FaceBook Puma演变及发展

  上图为Puma3的拓扑图,相对于Puma2,其延迟将大幅降低。据悉,Facebook公司目前对实时数据的处理分析能力在10秒多一点,但在未来将缩短到5秒甚至更短的时间。因为Facebook公司所具有的特殊性,其在未来将大幅缩短写性能,初步预期,相比于现在,将缩短25%的总体时间。现在每个机柜的内存为60GB,但在未来,其将大量部署SSD以替代内存,其内存大小将是现在的十倍,即600GB。

  邵铮工程师表示,在未来,将对数据调度提供更好的支持,在这点上,需要对Puma进行简单的调度,因为连续的工作负载;并且将进行大规模普及,将Hive迁移到日常的报告查询。并且邵铮工程师透露了一个令人极度兴奋的消息,这些即将开源,将免费的开放给其他工程师。












本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6400915.html,如需转载请自行联系原作者


相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
22天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
99 3
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
52 1
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
90 0
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
41 0
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
52 0
|
3月前
|
SQL 运维 程序员
一个功能丰富的SQL审核查询平台
一个功能丰富的SQL审核查询平台
|
4月前
|
前端开发 Java JSON
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
61 0
|
4月前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
208 0
|
5月前
|
存储 分布式计算 Hadoop
阿里巴巴飞天大数据架构体系与Hadoop生态系统的深度融合:构建高效、可扩展的数据处理平台
技术持续创新:随着新技术的不断涌现和应用场景的复杂化,阿里巴巴将继续投入研发力量推动技术创新和升级换代。 生态系统更加完善:Hadoop生态系统将继续扩展和完善,为用户提供更多元化、更灵活的数据处理工具和服务。

热门文章

最新文章