ElasticSearch实战-日志监控平台

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云数据库 Tair(兼容Redis),内存型 2GB
简介:

1.概述

  在项目业务倍增的情况下,查询效率受到影响,这里我们经过讨论,引进了分布式搜索套件——ElasticSearch,通过分布式搜索来解决当下业务上存在的问题。下面给大家列出今天分析的目录:

  • ElasticSearch 套件介绍
  • ElasticSearch 应用场景和案例
  • 平台架构

  下面开始今天的内容分享。

2.ElasticSearch 套件

2.1LogStash

  LogStash是一个开源的、免费的日志收集工具,属于Elastic家族的一员,负责将收集的日志信息输送到ElasticSearch,为ElasticSearch提供数据源。

2.2ElasticSearch

  ElasticSearch是一个开源的分布式搜索引擎,具备高可靠性,支持非常多的企业级搜索用例。像Solr4一样,是基于Lucene构建的。支持时间索引和全文检索。官网:https://www.elastic.co 它对外提供一系列基于Java和HTTP的API,用于索引、检索、修改大多数配置。

2.3 Kibana

  Kibana也是开源和免费的工具,同样也是Elastic家族的一员,它可以帮助我们汇总、分析和搜索重要数据日志,并且提供友好的Web可视化界面。它可以为LogStash和ElasticSearch提供一个可视化的Web界面。

  下面我们来看看ElasticSearch的应用场景和案例。

3.ElasticSearch 应用场景和案例

  在面对实时海量数据查询,实时搜索,全文搜索,ElasticSearch 都能够很好的去胜任,它是基于 Lucene、RESTful、分布式、面向云计算设计、实时搜索、全文搜索、稳定、高可靠、可扩展、安装和使用方便。下面给大家介绍一些场景的案例。

  • Github

  这个开源的托管平台,对于我们开发者来说,并不陌生,我们基本每天都会去访问Github,而Github使用ElasticSearch来实现搜索,运行在多个集群上。由于代码搜索索引很大,Github专门指定一个集群。Github使用Elasticsearch搜索20TB的数据,包括13亿的文件和1300亿行的代码。

  • Mozilla

  Mozilla公司因Firefox而闻名,它目前使用Elasticsearch将测试的结果以JSON的格式进行存储,开发人员可以非常方便的查找BUG。

  • Sony

  Sony公司使用Elasticsearch作为信息搜索引擎,以提供对外界的查询响应。

  另外,还有很多企业也用到了ElasticSearch去作为一个分布式搜索引擎,这里就不一一列举了。

4.平台架构

  下面,我给大家用一个图来说明日志监控平台的架构,如下图所示:

  通过上图,我们可以清晰的看到日志平台整个流向过程,下面我给大家来解释图中的各个环节的含义。首先,多个独立的Agent,这里就是图左边的三个LogStash节点,他们负责收集不同来源的数据,由一个Indexer负责进行汇总和分析数据,在这个当中有一个中间过程,这里我们使用了Broker,用Redis来实现这部分功能,其作用充当一个缓冲区,之后由ElasticSearch负责存储和搜索数据,最后由前段的Kibana可视化我们收集的数据。

  这里说明几点需要注意的地方:

  • 采用LogStash收集各种日志数据,其类型可以是:系统日志、文件、Redis、MQ等等。
  • Broker作为远程代理和中心代理的缓冲区,使用Redis进行实现,原因有二:其一,可以提高系统的性能;其二,可以提高系统的高可用性,当中心代理提取数据失败时,数据保存在Redis中,可以规避数据丢失的风险。
  • 中心代理使用LogStash,负责从Broker中获取数据,可以执行相关的分析和处理,它提供有Filter功能。
  • ElasticSearch用于存储最终的数据,并对外提供搜索功能,基于Restful。
  • Kibana提供一个简单、丰富的Web View可视化界面,用于可视化ElasticSearch集群中的数据,支持各种查询、统计和展示。

5.总结

  这篇博客只是给大家入个门,让大家通过一个日志监控平台的案例去熟悉ElasticSearch套件的使用,以及它的背景。后面我会专门用于一个ElasticSearch实战系列,来给大家分析这部分内容,包括平台的搭建部署,到平台的实现这一整个流程,这篇文章大家能够有个印象,熟悉各个套件的作用即可。

6.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

联系方式: 
邮箱:smartloli.org@gmail.com 
Twitter: https://twitter.com/smartloli 
QQ群(Hadoop - 交流社区1): 424769183 
温馨提示:请大家加群的时候写上加群理由(姓名+公司/学校),方便管理员审核,谢谢! 

热爱生活,享受编程,与君共勉!



本文转自哥不是小萝莉博客园博客,原文链接:http://www.cnblogs.com/smartloli/,如需转载请自行联系原作者

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
125 6
|
3月前
|
存储 消息中间件 网络协议
日志平台-ELK实操系列(一)
日志平台-ELK实操系列(一)
|
16天前
|
Java Maven Spring
超实用的SpringAOP实战之日志记录
【11月更文挑战第11天】本文介绍了如何使用 Spring AOP 实现日志记录功能。首先概述了日志记录的重要性及 Spring AOP 的优势,然后详细讲解了搭建 Spring AOP 环境、定义日志切面、优化日志内容和格式的方法,最后通过测试验证日志记录功能的准确性和完整性。通过这些步骤,可以有效提升系统的可维护性和可追踪性。
|
2月前
|
存储 运维 监控
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
本文解析了Elasticsearch Serverless在智能日志分析领域的关键技术、优势及应用价值。
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
|
24天前
|
存储 SQL 监控
|
24天前
|
自然语言处理 监控 数据可视化
|
24天前
|
运维 监控 安全
|
27天前
|
存储 监控 安全
|
27天前
|
存储 数据采集 监控
开源日志分析Elasticsearch
【10月更文挑战第22天】
46 5
|
2月前
|
Java 程序员 应用服务中间件
「测试线排查的一些经验-中篇」&& 调试日志实战
「测试线排查的一些经验-中篇」&& 调试日志实战
23 1
「测试线排查的一些经验-中篇」&& 调试日志实战