Linux kernel kfifo分析【转】

简介: 转自:https://zohead.com/archives/linux-kernel-kfifo/ 本文同步自(如浏览不正常请点击跳转):https://zohead.com/archives/linux-kernel-kfifo/ kfifo 是 Linux kernel 中的一个通用队列实现,对于 kernel 中常见的 FIFO 队列应用还是很有用的,本文主要简单介绍分析下 Linux kernel kfifo。

转自:https://zohead.com/archives/linux-kernel-kfifo/

本文同步自(如浏览不正常请点击跳转):https://zohead.com/archives/linux-kernel-kfifo/

kfifo 是 Linux kernel 中的一个通用队列实现,对于 kernel 中常见的 FIFO 队列应用还是很有用的,本文主要简单介绍分析下 Linux kernel kfifo。实际上 ChinaUnix 上有个 kfifo 的分析文章,但已经比较老(基于 Linux 2.6.10),而且我现在用的 2.6.34 版本 kernel 中 kfifo 实现有很多改动,故自己简单写下,ChinaUnix 上的 kfifo 介绍帖子在这里:

http://bbs.chinaunix.net/thread-1994832-1-1.html

kfifo 定义在 include/linux/kfifo.h 头文件中,我们经常使用的就是 kfifo 结构,看看它的定义:

1
2
3
4
5
6
struct kfifo {
     unsigned char *buffer;  /* the buffer holding the data */
     unsigned int size;  /* the size of the allocated buffer */
     unsigned int in;    /* data is added at offset (in % size) */
     unsigned int out;   /* data is extracted from off. (out % size) */
};

kfifo 也像其它队列那样提供了两个主要操作:入队列(in) 和 出队列(out),对应于上面结构中的 in 和 out 两个偏移量,in 偏移量为下次入队列的位置,out 为下次出队列的位置,很容易也能想到 out 值必须小于等于 in 值,当 out 值等于 in 值时表示队列为空,kfifo 中 buffer 为队列的空间,size 为空间大小,必须为 2 的 k 次幂值(原因在下面说明)。当然如果 in 值等于队列长度了,就表示队列已经满了。

先看看 kfifo 最简单的一些操作实现,在 kernel/kfifo.c 文件中:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
static void _kfifo_init( struct kfifo *fifo, void *buffer,
         unsigned int size)
{
     fifo->buffer = buffer;
     fifo->size = size;
 
     kfifo_reset(fifo);
}
 
/**
  * kfifo_init - initialize a FIFO using a preallocated buffer
  * @fifo: the fifo to assign the buffer
  * @buffer: the preallocated buffer to be used.
  * @size: the size of the internal buffer, this has to be a power of 2.
  *
  */
void kfifo_init( struct kfifo *fifo, void *buffer, unsigned int size)
{
     /* size must be a power of 2 */
     BUG_ON(!is_power_of_2(size));
 
     _kfifo_init(fifo, buffer, size);
}
EXPORT_SYMBOL(kfifo_init);
 
/**
  * kfifo_alloc - allocates a new FIFO internal buffer
  * @fifo: the fifo to assign then new buffer
  * @size: the size of the buffer to be allocated, this have to be a power of 2.
  * @gfp_mask: get_free_pages mask, passed to kmalloc()
  *
  * This function dynamically allocates a new fifo internal buffer
  *
  * The size will be rounded-up to a power of 2.
  * The buffer will be release with kfifo_free().
  * Return 0 if no error, otherwise the an error code
  */
int kfifo_alloc( struct kfifo *fifo, unsigned int size, gfp_t gfp_mask)
{
     unsigned char *buffer;
 
     /*
      * round up to the next power of 2, since our 'let the indices
      * wrap' technique works only in this case.
      */
     if (!is_power_of_2(size)) {
         BUG_ON(size > 0x80000000);
         size = roundup_pow_of_two(size);
     }
 
     buffer = kmalloc(size, gfp_mask);
     if (!buffer) {
         _kfifo_init(fifo, NULL, 0);
         return -ENOMEM;
     }
 
     _kfifo_init(fifo, buffer, size);
 
     return 0;
}
EXPORT_SYMBOL(kfifo_alloc);
 
/**
  * kfifo_free - frees the FIFO internal buffer
  * @fifo: the fifo to be freed.
  */
void kfifo_free( struct kfifo *fifo)
{
     kfree(fifo->buffer);
     _kfifo_init(fifo, NULL, 0);
}
EXPORT_SYMBOL(kfifo_free);

调用 kfifo_alloc 可以自动分配空间并初始化,你也可以调用 kfifo_init 函数使用自己的空间来初始化队列,可以看到这两个函数中都用 is_power_of_2 做了检查队列空间的操作。kfifo_free 释放队列,它会调用 _kfifo_init 函数(参数为 NULL 和 0 清空队列),调用 kfifo_reset 可以重置队列(将 in 和 out 都设为 0)。你也可以用 DECLARE_KFIFO 和 INIT_KFIFO 静态定义一个 kfifo 队列,尽管这不太会被用到。

调用 kfifo_in 函数将数据加入队列,kfifo_out 将数据从队列中取出并从队列中删除(增加 out 值),Linux 还提供了 kfifo_out_peek 函数从队列中取数据但并不删除(不增加 out 值)。kfifo_in 中会先调用 __kfifo_in_data 将输入加入队列,然后调用 __kfifo_add_in 增加 in 的值,kfifo_out 相反则调用 __kfifo_out_data 和 __kfifo_add_out 函数取出数据并删除。

kfifo 中同时提供了 kfifo_from_user 函数用户将用户空间的数据加入到队列中,它会先调用 __kfifo_from_user_data 将用户空间的数据加入队列,再调用 __kfifo_add_in 增加 in 的值。看看 __kfifo_from_user_data 的实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
static inline int __kfifo_from_user_data( struct kfifo *fifo,
      const void __user *from, unsigned int len, unsigned int off,
      unsigned *lenout)
{
     unsigned int l;
     int ret;
 
     /*
      * Ensure that we sample the fifo->out index -before- we
      * start putting bytes into the kfifo.
      */
 
     smp_mb();
 
     off = __kfifo_off(fifo, fifo->in + off);
 
     /* first put the data starting from fifo->in to buffer end */
     l = min(len, fifo->size - off);
     ret = copy_from_user(fifo->buffer + off, from, l);
     if (unlikely(ret)) {
         *lenout = ret;
         return -EFAULT;
     }
     *lenout = l;
 
     /* then put the rest (if any) at the beginning of the buffer */
     ret = copy_from_user(fifo->buffer, from + l, len - l);
     *lenout += ret ? ret : len - l;
     return ret ? -EFAULT : 0;
}

可以看到 __kfifo_from_user_data 中是直接调用 copy_from_user 将用户空间的数据拷贝到 kfifo 队列的空间中。相应的也有 kfifo_to_user 函数将队列中的数据取出到用户空间的地址,他就调用 copy_to_user 将队列中数据拷贝到用户空间。

需要注意的是 __kfifo_from_user_data 中用到的 __kfifo_off 函数:

1
2
3
4
static inline unsigned int __kfifo_off( struct kfifo *fifo, unsigned int off)
{
     return off & (fifo->size - 1);
}

__kfifo_off 是根据指定的偏移量得到索引值,由这里也可以看出为什么队列的大小为什么必须是 2 的 k 次幂值,否则无法得到正确的值。而且从代码中可以看到 __kfifo_from_user_data、__kfifo_in_n、__kfifo_in_rec 等函数中都用到了 __kfifo_off 函数指定加入队列时的偏移量。

另外从 include/linux/kfifo.h 中你也可以看到新的 kfifo 实现中默认 EXPORT 了非常多的 API 函数给 kernel 开发者使用。

以上为个人分析结果,有任何问题欢迎指正哦 ^_^

【作者】 张昺华
【新浪微博】 张昺华--sky
【twitter】 @sky2030_
【facebook】 张昺华 zhangbinghua
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
目录
相关文章
|
10天前
|
存储 运维 监控
Linux--深入理与解linux文件系统与日志文件分析
深入理解 Linux 文件系统和日志文件分析,对于系统管理员和运维工程师来说至关重要。文件系统管理涉及到文件的组织、存储和检索,而日志文件则记录了系统和应用的运行状态,是排查故障和维护系统的重要依据。通过掌握文件系统和日志文件的管理和分析技能,可以有效提升系统的稳定性和安全性。
27 7
|
12天前
|
监控 安全 Linux
启用Linux防火墙日志记录和分析功能
为iptables启用日志记录对于监控进出流量至关重要
|
2月前
|
缓存 算法 Linux
Linux内核中的调度策略优化分析####
本文深入探讨了Linux操作系统内核中调度策略的工作原理,分析了不同调度算法(如CFS、实时调度)在多核处理器环境下的性能表现,并提出了针对高并发场景下调度策略的优化建议。通过对比测试数据,展示了调度策略调整对于系统响应时间及吞吐量的影响,为系统管理员和开发者提供了性能调优的参考方向。 ####
|
5月前
|
存储 IDE Unix
Linux 内核源代码情景分析(四)(上)
Linux 内核源代码情景分析(四)
42 1
Linux 内核源代码情景分析(四)(上)
|
4月前
|
存储 缓存 编译器
Linux kernel memory barriers 【ChatGPT】
Linux kernel memory barriers 【ChatGPT】
62 11
|
5月前
|
存储 Linux 块存储
Linux 内核源代码情景分析(三)(下)
Linux 内核源代码情景分析(三)
46 4
|
5月前
|
Linux C语言
深度探索Linux操作系统 —— 编译过程分析
深度探索Linux操作系统 —— 编译过程分析
43 2
|
5月前
|
存储 Unix Linux
Linux 内核源代码情景分析(四)(下)
Linux 内核源代码情景分析(四)
33 2
|
5月前
|
Linux 网络安全 开发工具
内核实验(二):自定义一个迷你Linux ARM系统,基于Kernel v5.15.102, Busybox,Qemu
本文介绍了如何基于Linux Kernel 5.15.102版本和BusyBox创建一个自定义的迷你Linux ARM系统,并使用QEMU进行启动和调试,包括内核和BusyBox的编译配置、根文件系统的制作以及运行QEMU时的命令和参数设置。
437 0
内核实验(二):自定义一个迷你Linux ARM系统,基于Kernel v5.15.102, Busybox,Qemu
|
4月前
|
存储 传感器 Linux
STM32微控制器为何不适合运行Linux系统的分析
总的来说,虽然技术上可能存在某些特殊情况下将Linux移植到高端STM32微控制器上的可能性,但从资源、性能、成本和应用场景等多个方面考虑,STM32微控制器不适合运行Linux系统。对于需要运行Linux的应用,更适合选择ARM Cortex-A系列处理器的开发平台。
306 0