链表面试题Java实现【重要】

简介:

【正文】

这份笔记整理了整整一个星期,每一行代码都是自己默写完成,并测试运行成功,同时也回顾了一下《剑指offer》这本书中和链表有关的讲解,希望对笔试和面试有所帮助。OMG!

 

本文包含链表的以下内容:

  1、单链表的创建和遍历

  2、求单链表中节点的个数

  3、查找单链表中的倒数第k个结点(剑指offer,题15)

  4、查找单链表中的中间结点

  5、合并两个有序的单链表,合并之后的链表依然有序【出现频率高】(剑指offer,题17)

  6、单链表的反转【出现频率最高】(剑指offer,题16)

  7、从尾到头打印单链表(剑指offer,题5)

  8、判断单链表是否有环

  9、取出有环链表中,环的长度

  10、单链表中,取出环的起始点(剑指offer,题56)。本题需利用上面的第8题和第9题。

  11、判断两个单链表相交的第一个交点(剑指offer,题37)

 

此外,《剑指offer》中还有如下和链表相关的题目暂时还没有收录:(以后再收录)

剑指offer,题13:在O(1)时间删除链表结点

剑指offer,题26:复杂链表的复制

剑指offer,题45:圆圈中最后剩下的数字

剑指offer,题57:删除链表中

 

1、单链表的创建和遍历:

复制代码
 1 public class LinkList {
 2     public Node head;
 3     public Node current;
 4 
 5     //方法:向链表中添加数据
 6     public void add(int data) {
 7         //判断链表为空的时候
 8         if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点
 9             head = new Node(data);
10             current = head;
11         } else {
12             //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)
13             current.next = new Node(data);
14             //把链表的当前索引向后移动一位
15             current = current.next;   //此步操作完成之后,current结点指向新添加的那个结点
16         }
17     }
18 
19     //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历
20     public void print(Node node) {
21         if (node == null) {
22             return;
23         }
24 
25         current = node;
26         while (current != null) {
27             System.out.println(current.data);
28             current = current.next;
29         }
30     }
31 
32 
33     class Node {
34         //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。
35         int data; //数据域
36         Node next;//指针域
37 
38         public Node(int data) {
39             this.data = data;
40         }
41     }
42 
43 
44     public static void main(String[] args) {
45         LinkList list = new LinkList();
46         //向LinkList中添加数据
47         for (int i = 0; i < 10; i++) {
48             list.add(i);
49         }
50 
51         list.print(list.head);// 从head节点开始遍历输出
52     }
53 
54 }
复制代码

上方代码中,这里面的Node节点采用的是内部类来表示(33行)。使用内部类的最大好处是可以和外部类进行私有操作的互相访问

注:内部类访问的特点是:内部类可以直接访问外部类的成员,包括私有;外部类要访问内部类的成员,必须先创建对象。

为了方便添加和遍历的操作,在LinkList类中添加一个成员变量current,用来表示当前节点的索引(03行)。

这里面的遍历链表的方法(20行)中,参数node表示从node节点开始遍历,不一定要从head节点遍历。

 

2、求单链表中节点的个数:

  注意检查链表是否为空。时间复杂度为O(n)。这个比较简单。

核心代码:

复制代码
 1     //方法:获取单链表的长度
 2     public int getLength(Node head) {
 3         if (head == null) {
 4             return 0;
 5         }
 6 
 7         int length = 0;
 8         Node current = head;
 9         while (current != null) {
10             length++;
11             current = current.next;
12         }
13 
14         return length;
15     }
复制代码

 

3、查找单链表中的倒数第k个结点:

3.1  普通思路:

先将整个链表从头到尾遍历一次,计算出链表的长度size,得到链表的长度之后,就好办了,直接输出第(size-k)个节点就可以了(注意链表为空,k为0,k为1,k大于链表中节点个数时的情况

)。时间复杂度为O(n),大概思路如下:

复制代码
 1 public int findLastNode(int index) {  //index代表的是倒数第index的那个结点
 2 
 3         //第一次遍历,得到链表的长度size
 4         if (head == null) {
 5             return -1;
 6         }
 7 
 8         current = head;
 9         while (current != null) {
10             size++;
11             current = current.next;
12         }
13 
14         //第二次遍历,输出倒数第index个结点的数据
15         current = head;
16         for (int i = 0; i < size - index; i++) {
17             current = current.next;
18         }
19 
20         return current.data;
21     }
复制代码

如果面试官不允许你遍历链表的长度,该怎么做呢?接下来就是。

 

3.2  改进思路:(这种思路在其他题目中也有应用)

     这里需要声明两个指针:即两个结点型的变量first和second,首先让first和second都指向第一个结点,然后让second结点往后挪k-1个位置,此时first和second就间隔了k-1个位置,然后整体向后移动这两个节点,直到second节点走到最后一个结点的时候,此时first节点所指向的位置就是倒数第k个节点的位置。时间复杂度为O(n)

代码实现:(初版)

复制代码
 1 public Node findLastNode(Node head, int index) {
 2 
 3         if (node == null) {
 4             return null;
 5         }
 6 
 7         Node first = head;
 8         Node second = head;
 9 
10         //让second结点往后挪index个位置
11         for (int i = 0; i < index; i++) {
12             second = second.next;
13         }
14 
15         //让first和second结点整体向后移动,直到second结点为Null
16         while (second != null) {
17             first = first.next;
18             second = second.next;
19         }
20 
21         //当second结点为空的时候,此时first指向的结点就是我们要找的结点
22         return first;
23     }
复制代码

 代码实现:(最终版)(考虑k大于链表中结点个数时的情况时,抛出异常

上面的代码中,看似已经实现了功能,其实还不够健壮:

  要注意k等于0的情况;

  如果k大于链表中节点个数时,就会报空指针异常,所以这里需要做一下判断。

核心代码如下:

复制代码
 1     public Node findLastNode(Node head, int k) {
 2         if (k == 0 || head == null) {
 3             return null;
 4         }
 5 
 6         Node first = head;
 7         Node second = head;
 8 
 9         //让second结点往后挪k-1个位置
10         for (int i = 0; i < k - 1; i++) {
11             System.out.println("i的值是" + i);
12             second = second.next;
13             if (second == null) { //说明k的值已经大于链表的长度了
14                 //throw new NullPointerException("链表的长度小于" + k); //我们自己抛出异常,给用户以提示
15                 return null;
16             }
17         }
18 
19         //让first和second结点整体向后移动,直到second走到最后一个结点
20         while (second.next != null) {
21             first = first.next;
22             second = second.next;
23         }
24 
25         //当second结点走到最后一个节点的时候,此时first指向的结点就是我们要找的结点
26         return first;
27     }
复制代码

 

4、查找单链表中的中间结点:

同样,面试官不允许你算出链表的长度,该怎么做呢?

思路:

    和上面的第2节一样,也是设置两个指针first和second,只不过这里是,两个指针同时向前走,second指针每次走两步,first指针每次走一步,直到second指针走到最后一个结点时,此时first指针所指的结点就是中间结点。注意链表为空,链表结点个数为1和2的情况。时间复杂度为O(n)。

代码实现:

复制代码
 1     //方法:查找链表的中间结点
 2     public Node findMidNode(Node head) {
 3 
 4         if (head == null) {
 5             return null;
 6         }
 7 
 8         Node first = head;
 9         Node second = head;
10         //每次移动时,让second结点移动两位,first结点移动一位
11         while (second != null && second.next != null) {
12             first = first.next;
13             second = second.next.next;
14         }
15         
16         //直到second结点移动到null时,此时first指针指向的位置就是中间结点的位置
17         return first;
18     }
复制代码

上方代码中,当n为偶数时,得到的中间结点是第n/2 + 1个结点。比如链表有6个节点时,得到的是第4个节点。

 

5、合并两个有序的单链表,合并之后的链表依然有序:

    这道题经常被各公司考察。

例如:

链表1:

  1->2->3->4

链表2:

  2->3->4->5

合并后:

  1->2->2->3->3->4->4->5

解题思路:

  挨着比较链表1和链表2。

  这个类似于归并排序。尤其要注意两个链表都为空、和其中一个为空的情况。只需要O (1) 的空间。时间复杂度为O (max(len1,len2))

代码实现:

复制代码
 1     //两个参数代表的是两个链表的头结点
 2     public Node mergeLinkList(Node head1, Node head2) {
 3 
 4         if (head1 == null && head2 == null) {  //如果两个链表都为空
 5             return null;
 6         }
 7         if (head1 == null) {
 8             return head2;
 9         }
10         if (head2 == null) {
11             return head1;
12         }
13 
14         Node head; //新链表的头结点
15         Node current;  //current结点指向新链表
16 
17         // 一开始,我们让current结点指向head1和head2中较小的数据,得到head结点
18         if (head1.data < head2.data) {
19             head = head1;
20             current = head1;
21             head1 = head1.next;
22         } else {
23             head = head2;
24             current = head2;
25             head2 = head2.next;
26         }
27 
28         while (head1 != null && head2 != null) {
29             if (head1.data < head2.data) {
30                 current.next = head1;  //新链表中,current指针的下一个结点对应较小的那个数据
31                 current = current.next; //current指针下移
32                 head1 = head1.next;
33             } else {
34                 current.next = head2;
35                 current = current.next;
36                 head2 = head2.next;
37             }
38         }
39 
40         //合并剩余的元素
41         if (head1 != null) { //说明链表2遍历完了,是空的
42             current.next = head1;
43         }
44 
45         if (head2 != null) { //说明链表1遍历完了,是空的
46             current.next = head2;
47         }
48 
49         return head;
50     }
复制代码

 代码测试:

复制代码
 1     public static void main(String[] args) {
 2         LinkList list1 = new LinkList();
 3         LinkList list2 = new LinkList();
 4         //向LinkList中添加数据
 5         for (int i = 0; i < 4; i++) {
 6             list1.add(i);
 7         }
 8 
 9         for (int i = 3; i < 8; i++) {
10             list2.add(i);
11         }
12 
13         LinkList list3 = new LinkList();
14         list3.head = list3.mergeLinkList(list1.head, list2.head); //将list1和list2合并,存放到list3中
15 
16         list3.print(list3.head);// 从head节点开始遍历输出
17     }
复制代码

 上方代码中用到的add方法和print方法和第1小节中是一致的。

运行效果:

adc768ee-a891-4ad1-9f36-8eadf1ed6437

注:《剑指offer》中是用递归解决的,感觉有点难理解。

 

6、单链表的反转:【出现频率最高】

例如链表:

  1->2->3->4

反转之后:

  4->3->2->1

思路:

  从头到尾遍历原链表,每遍历一个结点,将其摘下放在新链表的最前端。注意链表为空和只有一个结点的情况。时间复杂度为O(n) 

方法1:(遍历)

复制代码
 1     //方法:链表的反转
 2     public Node reverseList(Node head) {
 3 
 4         //如果链表为空或者只有一个节点,无需反转,直接返回原链表的头结点
 5         if (head == null || head.next == null) {
 6             return head;
 7         }
 8 
 9         Node current = head;
10         Node next = null; //定义当前结点的下一个结点
11         Node reverseHead = null;  //反转后新链表的表头
12 
13         while (current != null) {
14             next = current.next;  //暂时保存住当前结点的下一个结点,因为下一次要用
15 
16             current.next = reverseHead; //将current的下一个结点指向新链表的头结点
17             reverseHead = current;  
18 
19             current = next;   // 操作结束后,current节点后移
20         }
21 
22         return reverseHead;
23     }
复制代码

上方代码中,核心代码是第16、17行。

方法2:(递归)

这个方法有点难,先不讲了。

 

7、从尾到头打印单链表:

  对于这种颠倒顺序的问题,我们应该就会想到栈,后进先出。所以,这一题要么自己使用栈,要让系统使用栈,也就是递归。注意链表为空的情况。时间复杂度为O(n)

  注:不要想着先将单链表反转,然后遍历输出,这样会破坏链表的结构,不建议。

方法1:(自己新建一个栈)

复制代码
 1     //方法:从尾到头打印单链表
 2     public void reversePrint(Node head) {
 3 
 4         if (head == null) {
 5             return;
 6         }
 7 
 8         Stack<Node> stack = new Stack<Node>();  //新建一个栈
 9         Node current = head;
10 
11         //将链表的所有结点压栈
12         while (current != null) {-
13             stack.push(current);  //将当前结点压栈
14             current = current.next;
15         }
16 
17         //将栈中的结点打印输出即可
18         while (stack.size() > 0) {
19             System.out.println(stack.pop().data);  //出栈操作
20         }
21     }
复制代码

方法2:(使用系统的栈:递归,代码优雅简洁)

复制代码
1     public void reversePrint(Node head) {
2 
3 
4         if (head == null) {
5             return;
6         }
7         reversePrint(head.next);
8         System.out.println(head.data);
9     }
复制代码

总结:方法2是基于递归实现的,戴安看起来简洁优雅,但有个问题:当链表很长的时候,就会导致方法调用的层级很深,有可能造成栈溢出。而方法1的显式用栈,是基于循环实现的,代码的鲁棒性要更好一些。

 

8、判断单链表是否有环:

  这里也是用到两个指针,如果一个链表有环,那么用一个指针去遍历,是永远走不到头的。

  因此,我们用两个指针去遍历:first指针每次走一步,second指针每次走两步,如果first指针和second指针相遇,说明有环。时间复杂度为O (n)。

方法:

复制代码
 1     //方法:判断单链表是否有环
 2     public boolean hasCycle(Node head) {
 3 
 4         if (head == null) {
 5             return false;
 6         }
 7 
 8         Node first = head;
 9         Node second = head;
10 
11         while (second != null) {
12             first = first.next;   //first指针走一步
13             second = second.next.next;  second指针走两步
14 
15             if (first == second) {  //一旦两个指针相遇,说明链表是有环的
16                 return true;
17             }
18         }
19 
20         return false;
21     }
复制代码

完整版代码:(包含测试部分) 

这里,我们还需要加一个重载的add(Node node)方法,在创建单向循环链表时要用到。

LinkList.java:

复制代码
 1 public class LinkList {
 2     public Node head;
 3     public Node current;
 4 
 5     //方法:向链表中添加数据
 6     public void add(int data) {
 7         //判断链表为空的时候
 8         if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点
 9             head = new Node(data);
10             current = head;
11         } else {
12             //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)
13             current.next = new Node(data);
14             //把链表的当前索引向后移动一位
15             current = current.next;
16         }
17     }
18 
19 
20     //方法重载:向链表中添加结点
21     public void add(Node node) {
22         if (node == null) {
23             return;
24         }
25 
26         if (head == null) {
27             head = node;
28             current = head;
29         } else {
30             current.next = node;
31             current = current.next;
32         }
33     }
34 
35 
36     //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历
37     public void print(Node node) {
38         if (node == null) {
39             return;
40         }
41 
42         current = node;
43         while (current != null) {
44             System.out.println(current.data);
45             current = current.next;
46         }
47     }
48 
49     //方法:检测单链表是否有环
50     public boolean hasCycle(Node head) {
51 
52         if (head == null) {
53             return false;
54         }
55 
56         Node first = head;
57         Node second = head;
58 
59         while (second != null) {
60             first = first.next;  //first指针走一步
61             second = second.next.next;  //second指针走两步
62 
63             if (first == second) {  //一旦两个指针相遇,说明链表是有环的
64                 return true;
65             }
66         }
67 
68         return false;
69     }
70 
71     class Node {
72         //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。
73         int data; //数据域
74         Node next;//指针域
75 
76         public Node(int data) {
77             this.data = data;
78         }
79     }
80 
81     public static void main(String[] args) {
82         LinkList list = new LinkList();
83         //向LinkList中添加数据
84         for (int i = 0; i < 4; i++) {
85             list.add(i);
86         }
87 
88         list.add(list.head);  //将头结点添加到链表当中,于是,单链表就有环了。备注:此时得到的这个环的结构,是下面的第8小节中图1的那种结构。
89 
90         System.out.println(list.hasCycle(list.head));
91     }
92 }
复制代码

检测单链表是否有环的代码是第50行。

88行:我们将头结点继续往链表中添加,此时单链表就环了。最终运行效果为true。

如果删掉了88行代码,此时单链表没有环,运行效果为false。

 

9、取出有环链表中,环的长度:

我们平时碰到的有环链表是下面的这种:(图1

d28e487b-e5c1-4f4b-99a0-7c5d3d0e7b20

上图中环的长度是4。

但有可能也是下面的这种:(图2

062fff31-70cc-45fe-aef8-80ed6d51b666

此时,上图中环的长度就是3了。

那怎么求出环的长度呢?

思路:

    这里面,我们需要先利用上面的第7小节中的hasCycle方法(判断链表是否有环的那个方法),这个方法的返回值是boolean型,但是现在要把这个方法稍做修改,让其返回值为相遇的那个结点。然后,我们拿到这个相遇的结点就好办了,这个结点肯定是在环里嘛,我们可以让这个结点对应的指针一直往下走,直到它回到原点,就可以算出环的长度了。

方法:

复制代码
 1     //方法:判断单链表是否有环。返回的结点是相遇的那个结点
 2     public Node hasCycle(Node head) {
 3 
 4         if (head == null) {
 5             return null;
 6         }
 7 
 8         Node first = head;
 9         Node second = head;
10 
11         while (second != null) {
12             first = first.next;
13             second = second.next.next;
14 
15             if (first == second) {  //一旦两个指针相遇,说明链表是有环的
16                 return first;  //将相遇的那个结点进行返回
17             }
18         }
19 
20         return null;
21     }
22 
23     //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点
24     public int getCycleLength(Node node) {
25 
26         if (head == null) {
27             return 0;
28         }
29 
30         Node current = node;
31         int length = 0;
32 
33         while (current != null) {
34             current = current.next;
35             length++;
36             if (current == node) {  //当current结点走到原点的时候
37                 return length;
38             }
39         }
40 
41         return length;
42     }
复制代码

完整版代码:(包含测试部分)

复制代码
  1 public class LinkList {
  2     public Node head;
  3     public Node current;
  4 
  5     public int size;
  6 
  7     //方法:向链表中添加数据
  8     public void add(int data) {
  9         //判断链表为空的时候
 10         if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点
 11             head = new Node(data);
 12             current = head;
 13         } else {
 14             //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)
 15             current.next = new Node(data);
 16             //把链表的当前索引向后移动一位
 17             current = current.next;   //此步操作完成之后,current结点指向新添加的那个结点
 18         }
 19     }
 20 
 21 
 22     //方法重载:向链表中添加结点
 23     public void add(Node node) {
 24         if (node == null) {
 25             return;
 26         }
 27         if (head == null) {
 28             head = node;
 29             current = head;
 30         } else {
 31             current.next = node;
 32             current = current.next;
 33         }
 34     }
 35 
 36 
 37     //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历
 38     public void print(Node node) {
 39         if (node == null) {
 40             return;
 41         }
 42 
 43         current = node;
 44         while (current != null) {
 45             System.out.println(current.data);
 46             current = current.next;
 47         }
 48     }
 49 
 50     //方法:判断单链表是否有环。返回的结点是相遇的那个结点
 51     public Node hasCycle(Node head) {
 52 
 53         if (head == null) {
 54             return null;
 55         }
 56 
 57         Node first = head;
 58         Node second = head;
 59 
 60         while (second != null) {
 61             first = first.next;
 62             second = second.next.next;
 63 
 64             if (first == second) {  //一旦两个指针相遇,说明链表是有环的
 65                 return first;  //将相遇的那个结点进行返回
 66             }
 67         }
 68 
 69         return null;
 70     }
 71 
 72     //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点
 73     public int getCycleLength(Node node) {
 74 
 75         if (head == null) {
 76             return 0;
 77         }
 78 
 79         Node current = node;
 80         int length = 0;
 81 
 82         while (current != null) {
 83             current = current.next;
 84             length++;
 85             if (current == node) {  //当current结点走到原点的时候
 86                 return length;
 87             }
 88         }
 89 
 90         return length;
 91     }
 92 
 93     class Node {
 94         //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。
 95         int data; //数据域
 96         Node next;//指针域
 97 
 98         public Node(int data) {
 99             this.data = data;
100         }
101     }
102 
103 
104     public static void main(String[] args) {
105         LinkList list1 = new LinkList();
106 
107         Node second = null; //把第二个结点记下来
108 
109         //向LinkList中添加数据
110         for (int i = 0; i < 4; i++) {
111             list1.add(i);
112 
113             if (i == 1) {
114                 second = list1.current;  //把第二个结点记下来
115             }
116         }
117 
118         list1.add(second);   //将尾结点指向链表的第二个结点,于是单链表就有环了,备注:此时得到的环的结构,是本节中图2的那种结构
119         Node current = list1.hasCycle(list1.head);  //获取相遇的那个结点
120 
121         System.out.println("环的长度为" + list1.getCycleLength(current));
122     }
123 
124 }
复制代码

 运行效果:

0d5dd16d-69fb-43b4-a99f-32c7c0a7a624

如果将上面的104至122行的测试代码改成下面这样的:(即:将图2中的结构改成图1中的结构)

复制代码
 1     public static void main(String[] args) {
 2         LinkList list1 = new LinkList();
 3         //向LinkList中添加数据
 4         for (int i = 0; i < 4; i++) {
 5             list1.add(i);
 6         }
 7 
 8         list1.add(list1.head); //将头结点添加到链表当中(将尾结点指向头结点),于是,单链表就有环了。备注:此时得到的这个环的结构,是本节中图1的那种结构。
 9 
10         Node current = list1.hasCycle(list1.head);
11 
12         System.out.println("环的长度为" + list1.getCycleLength(current)); 
13     }
复制代码

运行结果:

703c26a6-a04c-450a-9fb7-00fa92a3eb79

如果把上面的代码中的第8行删掉,那么这个链表就没有环了,于是运行的结果为0。

 

10、单链表中,取出环的起始点:

我们平时碰到的有环链表是下面的这种:(图1

d28e487b-e5c1-4f4b-99a0-7c5d3d0e7b20[1]

上图中环的起始点1。

但有可能也是下面的这种:(图2

062fff31-70cc-45fe-aef8-80ed6d51b666[1]

此时,上图中环的起始点是2。

方法1:

  这里我们需要利用到上面第8小节的取出环的长度的方法getCycleLength,用这个方法来获取环的长度length。拿到环的长度length之后,需要用到两个指针变量first和second,先让second指针走length步;然后让first指针和second指针同时各走一步,当两个指针相遇时,相遇时的结点就是环的起始点。

:为了找到环的起始点,我们需要先获取环的长度,而为了获取环的长度,我们需要先判断是否有环。所以这里面其实是用到了三个方法

代码实现:

方法1的核心代码:

复制代码
 1     //方法:获取环的起始点。参数length表示环的长度
 2     public Node getCycleStart(Node head, int cycleLength) {
 3 
 4         if (head == null) {
 5             return null;
 6         }
 7 
 8         Node first = head;
 9         Node second = head;
10         //先让second指针走length步
11         for (int i = 0; i < cycleLength; i++) {
12             second = second.next;
13         }
14 
15         //然后让first指针和second指针同时各走一步
16         while (first != null && second != null) {
17             first = first.next;
18             second = second.next;
19 
20             if (first == second) { //如果两个指针相遇了,说明这个结点就是环的起始点
21                 return first;
22             }
23         }
24 
25         return null;
26     }
复制代码

完整版代码:(含测试部分)

复制代码
  1 public class LinkList {
  2     public Node head;
  3     public Node current;
  4 
  5     public int size;
  6 
  7     //方法:向链表中添加数据
  8     public void add(int data) {
  9         //判断链表为空的时候
 10         if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点
 11             head = new Node(data);
 12             current = head;
 13         } else {
 14             //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)
 15             current.next = new Node(data);
 16             //把链表的当前索引向后移动一位
 17             current = current.next;   //此步操作完成之后,current结点指向新添加的那个结点
 18         }
 19     }
 20 
 21 
 22     //方法重载:向链表中添加结点
 23     public void add(Node node) {
 24         if (node == null) {
 25             return;
 26         }
 27         if (head == null) {
 28             head = node;
 29             current = head;
 30         } else {
 31             current.next = node;
 32             current = current.next;
 33         }
 34     }
 35 
 36 
 37     //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历
 38     public void print(Node node) {
 39         if (node == null) {
 40             return;
 41         }
 42 
 43         current = node;
 44         while (current != null) {
 45             System.out.println(current.data);
 46             current = current.next;
 47         }
 48     }
 49 
 50 
 51     //方法:判断单链表是否有环。返回的结点是相遇的那个结点
 52     public Node hasCycle(Node head) {
 53 
 54         if (head == null) {
 55             return null;
 56         }
 57 
 58         Node first = head;
 59         Node second = head;
 60 
 61         while (second != null) {
 62             first = first.next;
 63             second = second.next.next;
 64 
 65             if (first == second) {  //一旦两个指针相遇,说明链表是有环的
 66                 return first;  //将相遇的那个结点进行返回
 67             }
 68         }
 69 
 70         return null;
 71     }
 72     //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点
 73     public int getCycleLength(Node node) {
 74 
 75         if (head == null) {
 76             return 0;
 77         }
 78 
 79         Node current = node;
 80         int length = 0;
 81 
 82         while (current != null) {
 83             current = current.next;
 84             length++;
 85             if (current == node) {  //当current结点走到原点的时候
 86                 return length;
 87             }
 88         }
 89 
 90         return length;
 91     }
 92 
 93     //方法:获取环的起始点。参数length表示环的长度
 94     public Node getCycleStart(Node head, int cycleLength) {
 95 
 96         if (head == null) {
 97             return null;
 98         }
 99 
100         Node first = head;
101         Node second = head;
102         //先让second指针走length步
103         for (int i = 0; i < cycleLength; i++) {
104             second = second.next;
105         }
106 
107         //然后让first指针和second指针同时各走一步
108         while (first != null && second != null) {
109             first = first.next;
110             second = second.next;
111 
112             if (first == second) { //如果两个指针相遇了,说明这个结点就是环的起始点
113                 return first;
114             }
115         }
116 
117         return null;
118     }
119 
120     class Node {
121         //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。
122         int data; //数据域
123         Node next;//指针域
124 
125         public Node(int data) {
126             this.data = data;
127         }
128     }
129 
130 
131     public static void main(String[] args) {
132         LinkList list1 = new LinkList();
133 
134         Node second = null; //把第二个结点记下来
135 
136         //向LinkList中添加数据
137         for (int i = 0; i < 4; i++) {
138             list1.add(i);
139 
140             if (i == 1) {
141                 second = list1.current;  //把第二个结点记下来
142             }
143         }
144 
145         list1.add(second);   //将尾结点指向链表的第二个结点,于是单链表就有环了,备注:此时得到的环的结构,是本节中图2的那种结构
146         Node current = list1.hasCycle(list1.head);  //获取相遇的那个结点
147 
148         int length = list1.getCycleLength(current); //获取环的长度
149 
150         System.out.println("环的起始点是" + list1.getCycleStart(list1.head, length).data);
151 
152     }
153 
154 }
复制代码

  

11、判断两个单链表相交的第一个交点:

  《剑指offer》P193,5.3,面试题37就有这道题。

  面试时,很多人碰到这道题的第一反应是:在第一个链表上顺序遍历每个结点,每遍历到一个结点的时候,在第二个链表上顺序遍历每个结点。如果在第二个链表上有一个结点和第一个链表上的结点一样,说明两个链表在这个结点上重合。显然该方法的时间复杂度为O(len1 * len2)。

方法1:采用栈的思路

    我们可以看出两个有公共结点而部分重合的链表,拓扑形状看起来像一个Y,而不可能是X型。 如下图所示:   

ff56631d-76e3-44f9-a32b-cae01e5307e6

如上图所示,如果单链表有公共结点,那么最后一个结点(结点7)一定是一样的,而且是从中间的某一个结点(结点6)开始,后续的结点都是一样的。

现在的问题是,在单链表中,我们只能从头结点开始顺序遍历,最后才能到达尾结点。最后到达的尾节点却要先被比较,这听起来是不是像“先进后出”?于是我们就能想到利用栈的特点来解决这个问题:分别把两个链表的结点放入两个栈中,这样两个链表的尾结点就位于两个栈的栈顶,接下来比较下一个栈顶,直到找到最后一个相同的结点

这种思路中,我们需要利用两个辅助栈,空间复杂度是O(len1+len2),时间复杂度是O(len1+len2)。和一开始的蛮力法相比,时间效率得到了提高,相当于是利用空间消耗换取时间效率

那么,有没有更好的方法呢?接下来要讲。

 

方法2:判断两个链表相交的第一个结点:用到快慢指针,推荐(更优解)

我们在上面的方法2中,之所以用到栈,是因为我们想同时遍历到达两个链表的尾结点。其实为解决这个问题我们还有一个更简单的办法:首先遍历两个链表得到它们的长度。在第二次遍历的时候,在较长的链表上走 |len1-len2| 步,接着再同时在两个链表上遍历,找到的第一个相同的结点就是它们的第一个交点

这种思路的时间复杂度也是O(len1+len2),但是我们不再需要辅助栈,因此提高了空间效率。当面试官肯定了我们的最后一种思路的时候,就可以动手写代码了。

核心代码:

复制代码
 1     //方法:求两个单链表相交的第一个交点
 2     public Node getFirstCommonNode(Node head1, Node head2) {
 3         if (head1 == null || head == null) {
 4             return null;
 5         }
 6 
 7         int length1 = getLength(head1);
 8         int length2 = getLength(head2);
 9         int lengthDif = 0;  //两个链表长度的差值
10 
11         Node longHead;
12         Node shortHead;
13 
14         //找出较长的那个链表
15         if (length1 > length2) {
16             longHead = head1;
17             shortHead = head2;
18             lengthDif = length1 - length2;
19         } else {
20             longHead = head2;
21             shortHead = head1;
22             lengthDif = length2 - length1;
23         }
24 
25         //将较长的那个链表的指针向前走length个距离
26         for (int i = 0; i < lengthDif; i++) {
27             longHead = longHead.next;
28         }
29 
30         //将两个链表的指针同时向前移动
31         while (longHead != null && shortHead != null) {
32             if (longHead == shortHead) { //第一个相同的结点就是相交的第一个结点
33                 return longHead;
34             }
35             longHead = longHead.next;
36             shortHead = shortHead.next;
37         }
38 
39         return null;
40     }
41 
42 
43     //方法:获取单链表的长度
44     public int getLength(Node head) {
45         if (head == null) {
46             return 0;
47         }
48 
49         int length = 0;
50         Node current = head;
51         while (current != null) {
52 
53             length++;
54             current = current.next;
55         }
56 
57         return length;
复制代码

 

相关文章
|
5月前
|
存储 Java 开发者
揭秘!HashMap底层结构大起底:从数组到链表,再到红黑树,Java性能优化的秘密武器!
【8月更文挑战第24天】HashMap是Java集合框架中的核心组件,以其高效的键值对存储和快速访问能力广受开发者欢迎。在JDK 1.8及以后版本中,HashMap采用了数组+链表+红黑树的混合结构,实现了高性能的同时解决了哈希冲突问题。数组作为基石确保了快速定位;链表则用于处理哈希冲突;而当链表长度达到一定阈值时,通过转换为红黑树进一步提升性能。此外,HashMap还具备动态扩容机制,当负载因子超过预设值时自动扩大容量并重新哈希,确保整体性能。通过对HashMap底层结构的深入了解,我们可以更好地利用其优势解决实际开发中的问题。
146 0
|
6月前
|
SQL Java Unix
Android经典面试题之Java中获取时间戳的方式有哪些?有什么区别?
在Java中获取时间戳有多种方式,包括`System.currentTimeMillis()`(毫秒级,适用于日志和计时)、`System.nanoTime()`(纳秒级,高精度计时)、`Instant.now().toEpochMilli()`(毫秒级,ISO-8601标准)和`Instant.now().getEpochSecond()`(秒级)。`Timestamp.valueOf(LocalDateTime.now()).getTime()`适用于数据库操作。选择方法取决于精度、用途和时间起点的需求。
83 3
|
6月前
|
存储 Java 程序员
Java面试题:请解释Java中的永久代(PermGen)和元空间(Metaspace)的区别
Java面试题:请解释Java中的永久代(PermGen)和元空间(Metaspace)的区别
262 11
|
6月前
|
缓存 监控 算法
Java面试题:描述Java垃圾回收的基本原理,以及如何通过代码优化来协助垃圾回收器的工作
Java面试题:描述Java垃圾回收的基本原理,以及如何通过代码优化来协助垃圾回收器的工作
97 8
|
6月前
|
NoSQL Java 应用服务中间件
Java高级面试题
Java高级面试题
134 1
|
6月前
|
网络协议 安全 前端开发
java面试题
java面试题
|
5月前
|
算法 Java
LeetCode初级算法题:环形链表+排列硬币+合并两个有序数组java解法
LeetCode初级算法题:环形链表+排列硬币+合并两个有序数组java解法
64 0
|
5月前
|
存储 算法 Java
LeetCode初级算法题:反转链表+统计N以内的素数+删除排序数组中的重复项Java详解
LeetCode初级算法题:反转链表+统计N以内的素数+删除排序数组中的重复项Java详解
52 0
|
6月前
|
NoSQL Java 关系型数据库
常见Java面试题
常见Java面试题
|
7月前
|
存储 SQL 算法
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表