【区块链之菜鸟入门】区块链发展史:从拜占庭将军问题到智慧契约

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 本文为是我为大家分享的区块链技术文章系列中的第一部分【区块链之菜鸟入门】的第二篇,在这篇文章中我们探一探区块链技术背后的历史,从上世纪80年代的拜占庭将军问题到今天的复杂的智慧契约,区块链是如何一步步走到今天的呢?

在“【区块链之菜鸟入门】亲,你淘的区块链到了!”这篇文章中,我们了解到了区块链技术的出现其实是为了去除银行类等中心机构的信用背书。从原本信任足够信用度的单独个体(中心)到信任一堆个体,这一过程就极大地降低了信任成本,而区块链技术的核心也就是去中心化,去信用中介。我们也聊到了区块链是比特币的底层技术,但是区块链就仅仅是比特币的底层技术么?区块链经过了怎样的变革才走到今天的呢?本文就为大家揭晓。


本文是【区块链之菜鸟入门】部分的第二篇,什么?拜占庭将军问题、杂凑现金......听上去蛮有意思,等着,我去搬个小板凳,听一听区块链的发展史中的那些事。


本文技术要点:

8f03c0becb0548fded6e8192d074982d081afe26


区块链源自比特币,不过在这之前,已有多项跨领域技术,皆是构成区块链的关键技术;而现在的区块链技术与应用,也已经远超过比特币区块链。要追溯区块链(Blockchain)是怎么来的,不外乎先想到比特币(Bitcoin),比特币是第一个采用区块链技术打造出的P2P电子货币系统应用,不过比特币区块链并非一项全新的技术,而是将跨领域过去数十年所累积的技术基础结合。

比特币区块链所实现的基于零信任基础、且真正去中心化的分散式系统,其实解决一个30多年前由Leslie Lamport等人所提出的拜占庭将军问题。

1982年Leslie Lamport把军中各地军队彼此取得共识、决定是否出兵的过程,延伸至运算领域,设法建立具容错性的分散式系统,即使部分节点失效仍可确保系统正常运行,可让多个基于零信任基础的节点达成共识,并确保资讯传递的一致性,而2008年出现的比特币区块链便解决了此问题。而比特币区块链中最关键的工作量证明机制,则是采用由Adam Back在1997年所发明Hashcash(杂凑现金),为一种工作量证明演算法(Proof of Work,POW),此演算法仰赖成本函数的不可逆特性,达到容易被验证,但很难被破解的特性,最早被应用于阻挡垃圾邮件。

在隐私安全方面的技术,可回溯到1982年David Chaum提出注重隐私的密码学网路支付系统,具有不可追踪的特性,成为比特币区块链在隐私安全面上的雏形,之后David Chaum也基于这个理论打造出不可追踪的密码学网路支付系统eCash,不过eCash并非去中心化系统。

在区块链中每笔交易,采用椭圆曲线数位签章演算法(Elliptic Curve Digital Signature Algorithm,ECDSA),可追溯回1985年Neal Koblitz和Victor Miller分别提出椭圆曲线密码学(Elliptic curve cryptography,ECC),首次将椭圆曲线用于密码学,建立公开金钥加密的演算法。相较于RSA演算法,采用ECC好处在于可以较短的金钥,达到相同的安全强度。到了1992年,由Scott Vanstone等人提出ECDSA。

区块链最早源于比特币,但区块链的应用却不仅于此。

过去几年也陆续出现许多基于区块链技术的电子货币(统称为Altcoins),不过随着比特币持续备受争议,各国政府与金融机构纷纷表态,直到近1、2年,大家才终于意识到区块链的真实价值,远超过于电子货币系统。

区块链可结合认许制,以满足金融监管需求

若要将比特币与区块链技术分开来看,最大的不同之处在于,由于比特币为虚拟货币应用,因此面临各国法规的限制,但区块链现在已经可结合认许制或其他方式来管控节点,决定让哪些节点参与交易验证及存取所有的资料,并提供治理架构(Governance Structure)商业逻辑(Business Logic)两大关键特性。目前区块链可分为非实名制和实名制两种,前者如比特币区块链,后者如台大地的GCoin区块链。现在的区块链已经可结合认许制 (Permissioned),来配合金融监管所需的反洗钱 (AML) 与身份验证 (KYC) 规范。而银行和金融机构想采用的都是实名制的区块链。

区块链演进阶段

区块链技术随着比特币出现后,经历了几个不同的阶段,常见的分法将比特币视为Blockchain 1.0,为数位货币(Currency)应用,Blockchain 2.0开始出现如智慧资产(Smart Assets)、智慧契约(Smart Contracts)等货币以外的应用,Blockchain3.0则是指更复杂的智慧契约,将区块链用于政府、医疗、科学、文化与艺术等领域。

区块链新创DTCO执行长李亚鑫基于现有的分法进行补充,他认为,Blockchain 2.0以彩色币(Colored Coin)为代表,在区块链上运行Open Assets Protocal,可传递货币以外的数位资产,如股票、债券等。而从Blockchain 2.0之后,可再分出一类属于Blockchain 2.5的应用,包括代币(货币桥)应用、分散式帐本(Distributed Ledgers)、资料层区块链(Data Layers Blockchain)、结合人工智慧(Artificial Intelligent),以及无交易所的国际汇款网路,以Ripple为代表,资料层、分散式储存则以Factom、MaidSafe为代表,Blockchain3.0则以Ethereum为代表。他表示,Blockchain2.5跟Blockchain3.0最大的不同在于,3.0较强调是更复杂的智慧契约,以2.5则强调代币(货币桥)应用,如可用于金融领域联盟制区块链,如运行1:1的美元、日圆、欧元等法币数位化。由于区块链协议几乎都是开源的,因此要取得区块链协议的原始码不是问题,重点是要找到好的区块链服务供应商,协助导入现有的系统。而银行或金融机构得对区块链有一定的了解,才能知道该如何选择,并应用于适合的业务情境。去年金融科技(Fintech)才刚吹进亚洲,没想到才过几个月,一股更强劲的区块链技术也开始引爆,全球金融产业可说是展现了前所未有的决心,也让区块链迅速成为各界切入金融科技的关键领域。

尽管现在就像是区块链的战国时代,不过银行或金融机构要从理解并接受区块链,到找出一套大家都认可的区块链,且真正应用于交易上,恐怕还需要一段时间。这次只比国外晚了半年,引爆点可从台大释出一套自行开发的开源区块链协议GCoin,并宣布将成立金融科技暨区块链中心说起,短短一周的时间,便引发各界高度关注,接着研讨会不断,不过,由于区块链具有较高的技术门槛,大家都知道它拥有许多特性跟好处,但却迟迟处于观望阶段,就连区块链的新创业者,也非常稀少。银行业目前也还卡在门口,除了少数金控开始分享这个议题之外,多数金融业者仍处于试图理解技术面的阶段。

技术演进:区块链是怎么来的

1982年

  • 拜占庭将军问题

Leslie Lamport等人提出拜占庭将军问题(Byzantine Generals Problem),把军中各地军队彼此取得共识、决定是否出兵的过程,延伸至运算领域,设法建立具容错性的分散式系统,即使部分节点失效仍可确保系统正常运行,可让多个基于零信任基础的节点达成共识,并确保资讯传递的一致性,而2008年出现的比特币区块链便解决了此问题。

  • David Chaum提出密码学网路支付系统

David Chaum提出注重隐私安全的密码学网路支付系统,具有不可追踪的特性,成为之后比特币区块链在隐私安全面的雏形。

1985年

  • 椭圆曲线密码学

Neal Koblitz和Victor Miller分别提出椭圆曲线密码学(Elliptic Curve Cryptography,ECC),首次将椭圆曲线用于密码学,建立公开金钥加密的演算法。相较于RSA演算法,采用ECC好处在于可用较短的金钥,达到相同的安全强度。

1990年

David Chaum基于先前理论打造出不可追踪的密码学网路支付系统,就是后来的eCash,不过eCash并非去中心化系统。

Leslie Lamport提出具高容错的一致性演算法Paxos。

1991年

  • 使用时间戳确保数位文件安全

Stuart Haber与W. Scott Stornetta提出用时间戳确保数位文件安全的协议,此概念之后被比特币区块链系统所采用。

1992年

Scott Vanstone等人提出椭圆曲线数位签章演算法(Elliptic Curve Digital Signature Algorithm,ECDSA)

1997年

  • Adam Back发明Hashcash技术

Adam Back发明Hashcash(杂凑现金),为一种工作量证明演算法(Proof of Work,POW),此演算法仰赖成本函数的不可逆特性,达到容易被验证,但很难被破解的特性, 最早被应用于阻挡垃圾邮件。Hashcash之后成为比特币区块链所采用的关键技术之一。(Adam Back于2002年正式发表Hashcash论文)

1998年

  • Wei Dai发表匿名的分散式电子现金系统B-money

Wei Dai发表匿名的分散式电子现金系统B-money,引入工作量证明机制,强调点对点交易和不可窜改特性。不过在B-money中,并未采用Adam Back提出的Hashcash演算法。Wei Dai的许多设计之后被比特币区块链所采用。

  • Nick Szabo发表Bit Gold

Nick Szabo发表去中心化的数位货币系统Bit Gold,参与者可贡献运算能力来解出加密谜题。

2005年

  • 可重复使用的工作量证明机制(RPOW)

Hal Finney提出可重复使用的工作量证明机制(Reusable Proofs of Work,RPOW),结合B-money与Adam Back提出的Hashcash演算法来创造密码学货币。

2008年

  • Blockchain 1.0:加密货币

数位货币与支付系统去中心化、比特币:Satoshi Nakamoto(中本聪)发表一篇关于比特币的论文,描述一个点对点电子现金系统,能在不具信任的基础之上,建立一套去中心化的电子交易体系。

2012年

  • Blockchain2.0:智慧资产、智慧契约

市场去中心化,可作货币以外的数位资产转移,如股票、债券。如Colored Coin便是基于比特币区块链的开源协议,可在比特币在区块链上发行多项资产

2014年

  • Blockchain 3.0:更复杂的智慧契约

更复杂的智慧合约,将区块链用于政府、医疗、科学、文化与艺术等领域。

2016年

  • Blockchain 2.5:金融领域应用、资料层
  • Blockchain2.5:强调代币(货币桥)应用、分散式帐本、资料层区块链,及结合人工智慧等金融应用
  • Blockchain 3.0:更复杂的智慧契约
相关文章
|
21天前
|
机器学习/深度学习 自然语言处理 物联网
深度学习入门:从理论到实践新技术趋势与应用:探讨新兴技术如区块链、物联网、虚拟现实等的发展趋势和应用场景
【8月更文挑战第30天】本文将介绍深度学习的基本原理和实践应用。我们将从深度学习的定义、历史和发展开始,然后深入探讨其工作原理和关键技术。接着,我们将通过一个简单的代码示例来展示如何实现深度学习模型。最后,我们将讨论深度学习在现实世界中的应用和挑战。无论你是初学者还是有经验的开发者,这篇文章都将为你提供深度学习的全面理解。
|
14天前
|
存储 供应链 安全
掌握未来:区块链技术的简易入门指南
想象一下,有一种魔法可以安全地储存你的财富和信息,不受任何中心化机构的控制。听起来像是幻想?其实不是!这就是区块链技术的魅力所在。本文将带你走进区块链的世界,了解它如何工作,以及为什么它可能改变我们的未来。无论你是完全的新手,还是对这项技术略知一二,这篇文章都将为你提供有价值的见解。
|
3月前
|
安全 算法 定位技术
[Solidity][区块链安全入门]Solidity语言关于密码学知识的运用以及存在漏洞
密码学在区块链中扮演关键角色,确保机密性、完整性、身份认证和不可否认性。对称密钥加密用于快速加密,但不支持不可否认性。非对称加密(如RSA)解决了这一问题,每个用户拥有公钥和私钥。散列函数(如SHA-1、SHA-2)用于数字签名,保证信息来源和完整性。同态加密允许在不解密情况下处理加密数据,增强隐私保护。零知识证明则能验证信息正确性而不泄露额外信息,如ZCash使用该技术隐藏交易详情。环签名技术(如在门罗币中)隐藏签名者身份。区块链隐私保护措施包括混币技术,旨在混淆交易路径。网络和应用层面上也存在隐私挑战,需要综合策略来防御。
|
3月前
|
算法 安全 区块链
【区块链】解码拜占庭将军问题:区块链共识机制的哲学基石
拜占庭将军问题,一个由Leslie Lamport于1982年提出的经典分布式系统理论问题,是现代加密货币与区块链技术背后的哲学基础。这一理论模型不仅深刻地影响了计算机科学领域,还成为了构建去中心化信任体系的关键灵感来源。本文将深入剖析拜占庭将军问题的本质、解决方案及其对区块链共识机制的深远影响,为读者揭示这一抽象理论的现实应用价值。
121 0
|
算法 Serverless 区块链
|
存储 安全 物联网
区块链入门科普
区块链g入门科普
|
存储 算法 区块链
区块链入门应该做哪些事情
区块链入门应该做哪些事情 作为初学者,区块链入门应该做以下几件事情: 1. 学习基础知识:了解区块链、加密货币、数字钱包等基础知识,学习基本的投资和交易策略。 2. 选择合适的数字钱包:选择安全可靠的数字钱包,保护好自己的数字资产。 3. 选择合适的交易所:选择安全可靠的交易所,了解交易所的费用、交易量、交易对等信息。 4. 观察市场行情:观察市场行情,了解数字货币的价格走势和市场情况,制定投资计划。 5. 分散投资风险:不要把所有的资金都投入到同一种数字货币中,应该分散投资,降低风险。 6. 谨慎投资:投资数字货币需要谨慎,不要盲目跟风,要根据自己的情况和风险承受能力进行投资。
108 0
|
存储 供应链 算法
区块链入门
详细介绍一下区块链,简单了解一下区块链技术,更好了解区块链基础知识、应用领域与核心技术。
291 0
|
存储 供应链 算法
区块链从入门到放弃系列教程-涵盖密码学,超级账本,以太坊,Libra,比特币等持续更新
区块链从入门到放弃系列教程-涵盖密码学,超级账本,以太坊,Libra,比特币等持续更新
区块链从入门到放弃系列教程-涵盖密码学,超级账本,以太坊,Libra,比特币等持续更新
|
区块链
区块链开发(七)truffle使用入门汇总
区块链开发(七)truffle使用入门汇总
156 0
区块链开发(七)truffle使用入门汇总