R语言Data Frame数据框常用操作

简介: Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的。 Data Frame每一列有列名,每一行也可以指定行名。

Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的。

Data Frame每一列有列名,每一行也可以指定行名。如果不指定行名,那么就是从1开始自增的Sequence来标识每一行。

初始化

使用data.frame函数就可以初始化一个Data Frame。比如我们要初始化一个student的Data Frame其中包含ID和Name还有Gender以及Birthdate,那么代码为:
student<-data.frame(ID=c( 11, 12, 13),Name=c( " Devin ", " Edward ", " Wenli "),Gender=c( " M ", " M ", " F "),Birthdate=c( " 1984-12-29 ", " 1983-5-6 ", " 1986-8-8”))
另外也可以使用read.table() read.csv()读取一个文本文件,返回的也是一个Data Frame对象。读取数据库也是返回Data Frame对象。
查看student的内容为:
  ID   Name Gender  Birthdate
1  11  Devin      M 1984-12-29
2  12 Edward      M   1983-5-6
3  13  Wenli      F   1986-8-8
这里只指定了列名为ID,Name,Gender和Birthdate,使用names函数可以查看列名,如果要查看行名,需要用到row.names函数。这里我们希望将ID作为行名,那么可以这样写:
row.names(student)<-student$ID
更简单的办法是在初始化date.frame的时候,有参数row.names可以设置行名的向量。

访问元素

与Matrix一样,使用[行Index,列Index]的格式可以访问具体的元素。
比如访问第一行:
student[ 1,]
访问第二列:
student[, 2]
使用列的Index或者列名可以选取要访问的哪些列。比如要ID和Name,那么代码为:
idname<-student[ 1: 2]
或者是
idname<-student[c( " ID ", " Name”)]
如果是只访问某一列,返回的是Vector类型的,那么可以使用[[或者$来访问。比如我们要所有student的Name,代码为:
name<-student[[ 2]] 或者name<-student[[“Name”]] 或者name<-student$Name
使用attach和detach函数可以使得访问列时不需要总是跟着变量名在前面。
比如要打印所有Name,那么可以写成:
attach(student)
print(Name)
detach(student)
还可以换一种简洁一点的写法就是用with函数:
with(student,{
  n<-Name
  print(n)
})
这里的n作用域只在大括号内,如果想在with函数中对全局的变量进行赋值,那么需要使用<<-这样一个运算符。

修改列数据类型

接下来我们查看该对象每列的类型,使用str(student)可以得到如下结果:
'data.frame':3 obs. of  4 variables:
 $ ID       : num  1 2 3
 $ Name     : Factor w/ 3 levels "Devin","Edward",..: 1 2 3
 $ Gender   : Factor w/ 2 levels "F","M": 2 2 1
 $ Birthdate: Factor w/ 3 levels "1983-5-6","1984-12-29",..: 2 1 3
默认情况下,字符串向量都会被自动识别成Factor,也就是说,ID是数字类型,其他的3个列都被定义为Factor类型了。显然这里Name应该是字符串类型,Birthdate应该是Date类型,我们需要对列的数据类型进行更改:
student$Name<- as.character(student$Name)
student$Birthdate<- as.Date(student$Birthdate)
下面我们再运行str(student)看看修改后的结果:
'data.frame':3 obs. of  4 variables:
 $ ID       : num  11 12 13
 $ Name     : chr  "Devin" "Edward" "Wenli"
 $ Gender   : Factor w/ 2 levels "F","M": 2 2 1
 $ Birthdate: Date, format: "1984-12-29" "1983-05-06" "1986-08-08”

添加新列

对于以及存在的student对象,我们希望增加Age列,该列是根据Birthdate算出来的。首先需要知道怎么算年龄。我们可以使用日期函数Sys.Date()获得当前的日期,然后使用format函数获得年份,然后用两个年份相减就是年龄。好像R并没有提供几个能用的日期函数,我们只能使用format函数取出年份部分,然后转换为int类型相减。
student$Age<- as.integer(format(Sys.Date(), " %Y "))- as.integer(format(student$Birthdate, " %Y”))
这样写似乎太长了,我们可以用within函数,这个函数和之前提到过的with函数类似,可以省略变量名,不同的地方是within函数可以在其中修改变量,也就是我们这里增加Age列:
student<-within(student,{
  Age<- as.integer(format(Sys.Date(), " %Y "))- as.integer(format(Birthdate, " %Y "))
})

查询/子集

查询一个Date Frame,返回一个满足条件的子集,这相当于数据库中的表查询,是非常常见的操作。使用行和列的Index来获取子集是最简单的方法,前面已经提到过。如果我们使用布尔向量,配合which函数,可以实现对行的过滤。比如我们要查询所有Gender为F的数据,那么我们首先对student$Gender==“F”,得到一个布尔向量:FALSE FALSE  TRUE,然后使用which函数可以将布尔向量中TRUE的Index返回,所以我们的完整查询语句就是:
student[which(student$Gender== " F "),]
注意这里列Index并没有输入,如果我们只想知道所有女生的年龄,那么可以改为:
student[which(student$Gender== " F "), " Age”]
这样的查询写法还是复杂了点,可以直接使用subset函数,那么查询会简单些,比如我们把查询条件改为年龄<30的女性,查姓名和年龄,那么查询语句为:
subset(student,Gender== " F " & Age< 30 , select=c( " Name ", " Age "))
使用SQL查询Data Frame
对于我这种使用了多年SQL的人来说,如果能够直接写SQL语句对Data Frame进行查询操作,那是多么方便美妙的啊,结果还真有这么一个包:sqldf。
同样是前面的需求,对应的语句就是:
library(sqldf)
result<-sqldf( " select Name,Age from student where Gender='F' and Age<30 ")

连接/合并

对于数据库来说,对多表进行join查询是一个很正常的事情,那么在R中也可以对多个Data Frame进行连接,这就需要使用merge函数。
比如除了前面申明的student对象外,我们再申明一个score变量,记录了每个学生的科目和成绩:
score<-data.frame(SID=c( 11, 11, 12, 12, 13),Course=c( " Math ", " English ", " Math ", " Chinese ", " Math "),Score=c( 90, 80, 80, 95, 96))
我们看看该表的内容:
  SID  Course Score
1  11    Math    90
2  11 English    80
3  12    Math    80
4  12 Chinese    95
5  13    Math    96
这里的SID就是Student里面的ID,相当于一个外键,现在要用这个ID进行inner join操作,那么对应的R语句就是:
result<-merge(student,score,by.x= " ID ",by.y= " SID ")
我们看看merge以后的结果:
 ID   Name Gender  Birthdate Age  Course Score
1 11  Devin      M 1984-12-29  31    Math    90
2 11  Devin      M 1984-12-29  31 English    80
3 12 Edward      M 1983-05-06  32    Math    80
4 12 Edward      M 1983-05-06  32 Chinese    95
5 13  Wenli      F 1986-08-08  29    Math    96
正如我们期望的一样join在了一起。
除了join,另外一个操作就是union,这也是数据库常用操作,那么在R中如何将两个列一样的Data Frame Union联接在一起呢?虽然R语言中有union函数,但是不是SQL的Union的意思,我们要实现Union功能,需要用到rbind函数。
rbind的两个Data Frame必须有相同的列,比如我们再申明一个student2,将两个变量rbind起来:
student2<-data.frame(ID=c( 21, 22),Name=c( " Yan ", " Peng "),Gender=c( " F ", " M "),Birthdate=c( " 1982-2-9 ", " 1983-1-16 "),Age=c( 32, 31))
rbind(student,student2)
本文转自深蓝居博客园博客,原文链接:http://www.cnblogs.com/studyzy/p/R_DataFrame_Operation.html ,如需转载请自行联系原作者
相关文章
R语言笔记丨因子、数据框基础知识
R语言笔记丨因子、数据框基础知识
R语言之数据框的合并
R语言之数据框的合并
247 1
R语言之数据框的合并
R语言中DataFrame列名作为函数参数
在使用Tidyverse提供的各种函数时,我们很多时候都会直接传递DataFrame的列名作为函数参数,对对应的列进行操作。如果我们自定义的函数中需要传递列名作为函数参数,如何实现呢?
116 0
|
人工智能 数据挖掘 Linux
ChatGPT × R语言 丨实际数据分析过程中,AI能够带来哪些改变?数据框操作案例分享
ChatGPT × R语言 丨实际数据分析过程中,AI能够带来哪些改变?数据框操作案例分享
R语言-创建空数据框(Empty Data Frame )用于追加数据
本文分享了如何在R语言通过创建空数据框来实现追加数据的简单实现方法,以供参考
785 0
|
存储 关系型数据库 数据挖掘
R语言-Chunk大型数据框与稀疏矩阵应对 as.matrix溢出异常 “problem too large”
本文提出一种在R里面将大型数据集通过分块的方式转换出 DataFrame和 SparseMatrix的方法,能有效避免内存溢出、程序崩溃等严重问题。
298 0