Intel大坑之中的一个:丢失的SSE2 128bit/64bit 位移指令,马航MH370??

简介:

缘由

  近期在写一些字符串函数的优化,兴趣使然。但是写的过程中,想要实现 SSE2 128 bit / 64 bit 的按 bit 逻辑位移。遇到了一个大坑,且听我娓娓道来。

  我并不想用什么马航370来博眼球。当我写下这个标题的时候,的确没有马航370这个字眼,但是当我写到一半的时候,突然就冒出了马航370这几个字,假设你认真阅读了我的文章,或许你也应该思考一下。这 128 bit / 64 bit 的位移指令究竟是去哪了?石沉大海了?那不就跟马航370一样吗,是一个谜,一个很很大的谜。。。。

  假设你对 MMX, SSE 位移指令不太懂,能够先看看:

http://tommesani.com/index.php/simd/44-mmx-shift.html ,

这个比較easy理解,我当初学习 MMX, SSE 指令都是从这里開始的。
可是这个仅仅写到 MMX 指令集,更新的版本号看后面的。


逻辑位移

对于 MMX, SSE 的位移指令。我们非常自然的想到:

逻辑左移:PSLLW/PSLLD/PSLLQ。Shift Packed Data Left Logical (压缩逻辑左移)

逻辑右移:PSRLW/PSRLD/PSRLQ,Shift Packed Data  Right Logical (压缩逻辑右移)

顾名思义,W 指的是Word(字),D 指的 DWORD (双字),Q 指的是 QWORD (四字),PSLLW 实现的是按 Word 的分组逻辑左移,

PSLLD 是按 DWORD 的分组逻辑左移,PSLLQ 是按 QWORD 实现的分组逻辑左移,这一切看起来都非常 OK 。

这里以逻辑左移为例:


关于详细的逻辑左移指令的说明,可參考:

http://moeto.comoj.com/project/intel/instruct32_hh/vc256.htm

或者 http://x86.renejeschke.de/html/file_module_x86_id_259.html

右移也是类似的。在此不再螯述。

 

问题来了

  我们要实现的是 128bit 的逻辑位移,SSE2 里面有 PSLLDQ PSRLDQ 指令,这里 DQ 即是 Double QWORD 的意思。

这不正好是我们须要的 128bit 按 bit 位移吗?No!。别高兴得太早。我们来看看 Intel 的文档:

PSLLDQ--Packed Shift Left Logical Double Quadword

http://moeto.comoj.com/project/intel/instruct32_hh/vc255.htm

截图例如以下:


我们看到。非常遗憾。SSE2 并没有实现 128bit 的按 bit 位移,PSLLDQ 仅仅能实现 128bit 的按 byte 位移。即最小位移量必须是一个 byte (即8个bit),这非常不科学,更不科学的是位移量仅仅能是马上数。考虑到 Intel 并未真正实现 128bit 数据处理(SSE 大多数指令都仅仅实现了最多 64bit 粒度的数据处理。比如一个双精度浮点数是 64bit 的)。好吧,我们认了。可是!!可是。!

Intel 你没搞错吧。PSLLDQ 的操作数仅仅支持 imm8,imm8 意味着什么?imm8 是 8 位马上数的意思。那就是说我们仅仅能在汇编里写死(常数)。不能使用不论什么寄存器来做位移量。What the fu*K??

好吧,这我们也认了。。。CPU 是你设计的,我们拿你没办法。说句题外话。假设 PSLLDQ 支持 reg32, reg64 寄存器位移的话, 会方便非常多,由于我们能够先用 PSLLDQ 位移足够位数的按 Byte 位移,然后再用 PSLLQ 位移剩下的剩余量(这是后话,为什么要这么用。到后面你就知道),但是,如今这样的方法都不行。!

这个 imm8 彻底让我蛋碎了。。。PSLLQ 对于128 bit 寄存器一次仅仅能移 16 位(先破埂了)。那么意味这我们假设要用这样的方法,要 if / jump 好几次。

 

大坑開始

好吧,我们退而求其次。既然你不能实现 128 bit 的按 bit 位移。那我们分成两个 64 bit 的位移来实现好了,无非是多一次推断,多一次合并。尽管效率没有直接128 bit 位移的高,可是苦于你没实现嘛,仅仅能这么干了。。


好吧,我们開始吧。。

。。GO!

。。好了,我们换成 PSLLQ 了,运行PSLLQ xmm0, 32 或 PSLLQ xmm0, ecx (这里ecx的值为32),咦?xmm0怎么全为0了??啊,怎么回事??

我们回过头来又一次看看 intel 的文档:


重点看两个我用红线框起来的。当 PSLLQ 作用于 64 bit 的寄存器时。我们看到是最大支持 COUNT = 64 位的位移(严格意义上讲是 max = 63。这个不纠结了。习惯问题。下同)。

可是当 PSLLQ 作用于 128 bit 寄存器时。奇怪的事情发生了,最大仅仅支持 COUNT = 16 位的位移(严格意义上是15位),如上图所看到的。

假设不是又一次看 Intel 的文档,假设不是调试中发现问题,谁能想到最多仅仅能移15位???Intel 的脑袋是被门夹了吗??Why??MMX 寄存器上都能够实现最多 63 位的位移, SSE 寄存器为什么就不能够?尽管我们知道 MMX 寄存器和 SSE 寄存器是不一样的,分开的,MMX 寄存器是借用 x87 浮点寄存器来实现 MMX 指令的,但是你在 MMX 寄存器上实现了 64 bit 的位移,为什么在 128 bit 的 SSE 寄存器上却仅仅能移最多 15 位??你说难以实现,我认了。我不太懂为什么那么难。我们仅仅能认了。但是你却实现了 128 bit 的按 byte 位移的 PSLLDQ 指令,这又作何解释??本来顾名思义,PSLLDQ 就来就应该是实现 128 bit 的按 bit 位移,限于历史原因,这个没实现我能够理解。但是你没有理由在 PSLLQ 作用于 128 bit 的 SSE 寄存器时却最多仅仅能位移 15 位吧??这真的有那么难吗??真的难吗????真的那么难。你又是怎么实现 PSLLDQ 的 128 bit 按 Byte 位移的??

 

寻求答案

带着这些疑问,我们问了一下 Google 老先生,搜索“128 bit shift”,发现 N 多小伙伴都遇到过这个问题,比如:

Looking for sse 128 bit shift operation for non-immediate shift value

What is SSE !@#$% good for?

#2: Bit vector operations

 

最后,Google老先生告诉了我们一个最好的解答,来自 Intel 的论坛,在这里:

Missing instruction in SSE: PSLLDQ with _bit_ shift amount?


 

是这种,截图例如以下:


首先,Intel 是承认这个 missing instruction(丢失的指令)的,我们也意识到 missing instruction 无处不在。仅仅是这个有点过分。

上面的回复,大意是:(E文不是太好,用 Google 辅助翻译的。见谅)

 

Hi Geoff,

  我们的一个project师提供了下面回应,并做一些澄清。

 

  你这个问题是正确的,对于 SIMD(单指令多数据流) 来说。在当前的指令集里,bit 位移是比按 byte 位移难于实现的(指的是 SSE 寄存器

的 128 bit 按 bit 位移)。不幸的是。这不是一个小改变。实现一个这种按 bit 位移指令。

这里有很多其它的改变比简单的在马上字节里适应位移

距离--硬件实际完毕按 bit 位移是一个被限制的问题。

  假设你有一个使用案例关于为什么这个操作是实用的,随着应用程序将受益于这个操作。这是我们有兴趣听到的。普通情况下,我们试图

设计新的指令来满足特定的需求。而不是仅仅是提供 "missing instuctions“ (丢失指令)的支持。从实际情况来看,有非常多这种 "missing instuctions“

——更有趣的问题是。假设在实际的应用中应对这些 "missing instuctions“ 所带来的问题。

博主观点:

  对于 128 bit 的按 bit 位移比較难以实现。这我能理解,但是 PSLLQ 对于 SSE 的 128bit 寄存器仅仅能最多位移15位我就不能理解了……

SSE2 的 128bit/64bit 位移你在哪里,为什么是15而不是31,63?亲爱的马航MH370,你究竟在哪里?为什么要选择飞中国的航班?为什么??



解决之道

解决的办法有非常多种,前面也讲过一个。就是:假设你要左移 count 位。先用 PSLLDQ 位移 x * 8 位。 这个是纯 128 bit 的位移,然后再用 PSLLQ 位移剩下的 y = (count - x * 8) 位,这里 y 要小于 16。可是因为 PSLLDQ 仅仅能运行imm8马上数。所以你要先 if / jump 推断一下 count 的值。分别运行 PSLLDQ xmm0, 32; 或 PSLLDQ xmm0, 16; 或 PSLLDQ xmm0, 8; PSLLDQ xmm0, 4; PSLLDQ xmm0, 2; 以后。再运行 PSLLQ 位移剩下的 Y 位。这里PSLLDQ xmm0, 32或许能够用别的 SSE Shuffle 指令取代。可是是一样的,最大的问题是你要先 if 先推断一下再运行对应的指令。这样的方法并不见得高效。

我们再来找一些好一点的办法:

既然,SSE 里我们没办法实现 64 bit 的位移,可是 MMX 寄存器里是能够的,可是我们又要在 SSE 寄存器里实现,那么我们能够先把数据从 SSE 寄存器里转移到 MMX 寄存器。位移好了,再合并到 SSE 寄存器里。尽管这个过程有点繁琐,可是相比上面第一种方法。还是高效了不少,并且有一关键的地方,非常多时候。我们要做这个位移,都是接近终于输出结果的时候,这个时候就不必把数据合并回 SSE 寄存器了,能够直接用 MMX 寄存器的值作为输出就可以,这样又快了一点儿。还不赖。

还有没有解决的办法,应该还有,容我再想一想,或者读者你也想想?有网友贴了 AVX 版的 VPSLLDQ 指令说明,但是相同仅仅支持 imm8 马上数,并且并非全部人的 CPU 都支持 AVX 的,博主本人的 CPU 就不支持。


后记

我们如今遇到的问题做一个比喻,就是:我们前面有三条路,一条是大路,一条是小路,一条是其它未知的路,我们以为大路(PSLLDQ)最快。于是选择先走了大路,结果发现直接走是过不去的;转而选择小路(PSLLQ),走小路,结果发现有个陷阱,这个陷阱让我们到不了目的地,仅仅能达到1/4。然后再回过头来看看大路。大路事实上能够过去的,可是踩下去以后全是泥潭(仅仅支持马上数的128位 byte 位移),要走过去,非常艰难。那么我们仅仅能选择第三条未知的路了(各种其它指令的组合模拟实现)。

Intel 的 MMX, SSE 各种缺失的指令由来已久,指令的设计也是混乱不勘,另一个比較著名的就是仅仅实现了POR, PAND, PANDN(and not),没有实现 PNOT (即对MMX, SSE寄存器取反),尽管 PNOT 的确能够用 PANDN 实现(你至少须要2个寄存器),或者用 PCMPEQB xmm0, xmm0 来实现 全置 1 的操作,可是有可能添加了寄存器的占用,可能会添加指令周期,反正是各种不好。尽管影响不算大,可是有时候寄存器捉襟见肘的时候,还是很蛋疼的。

另一点更可笑的是。我跟你说了,你一定会相信 Intel 是荒唐的,我们的确须要的是无符号的逻辑左/右移,可是假设你要实现的是有符号的右移(算术右移),能够使用 PSRAW/PSRAD 指令 - 压缩算术右移,另外说一下。不存在算术左移。由于算术左移逻辑左移是一回事。可參考:

http://moeto.comoj.com/project/intel/instruct32_hh/vc257.htm

很可笑的是。在这里。Intel 却实现了对于 128 bit 寄存器最多 31 位的位移,更可笑的。对于 64 bit 寄存器最多的位移数也是 31(见上面的链接)。这你能懂???究竟是我们的智商有问题,还是 Intel 的智商有问题?!

看下图:


PS:纠正一下,上面这个举例是错误的(是我看错了),Intel 并没有实现 PSRAQ。上面这个是 PSRAD 的。是针对 DWORD 的。而不是 QWORD,所以他这么实现是正确的,这里并没有问题。


这个问题,在另外一个著名的帖子里也有提到:

千分求汇编优化:UInt96x96To192(...)


到眼下为止,都未实现 PSRAQ 指令。


. <END> .





本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5365498.html,如需转载请自行联系原作者 
相关文章
|
机器学习/深度学习 人工智能 监控
Intel全新加速指令AMX技术介绍&eBPF在低版本内核如何跑起来?今天3点见 | 第45-46期
今天下午3点,一起来了解 AMX 的技术细节、内核及龙蜥社区的支持情况,以及如何利用 AMX 进行基于 CPU 的 AI 优化。
Intel全新加速指令AMX技术介绍&eBPF在低版本内核如何跑起来?今天3点见 | 第45-46期
|
SQL 监控 关系型数据库
Intel PAUSE指令变化如何影响MySQL的性能
x86、arm指令都很多,无论是应用程序员还是数据库内核研发大多时候都不需要对这些指令深入理解,但是 Pause 指令和数据库操作太紧密了,本文通过一次非常有趣的性能优化来引入对 Pause 指令的理解,期望可以事半功倍地搞清楚 CPU指令集是如何影响你的程序的。
Intel PAUSE指令变化如何影响MySQL的性能
|
API 流计算 异构计算
HLS - intel HLS 指令使用指南
HLS - intel HLS 指令使用指南
295 0
|
Android开发
【Android 逆向】x86 汇编 ( 参考资料 | Intel 官方的文档 | x86 汇编中文文档 | 汇编指令查询器 )
【Android 逆向】x86 汇编 ( 参考资料 | Intel 官方的文档 | x86 汇编中文文档 | 汇编指令查询器 )
267 0
【Android 逆向】x86 汇编 ( 参考资料 | Intel 官方的文档 | x86 汇编中文文档 | 汇编指令查询器 )
|
编译器 流计算 计算机视觉
Intel汇编指令集SSE4
1、引言 Intel SSE 4指令集是当前使用广泛的汇编指令集,最初在45nm的Intel 64位处理器和AMD的K10处理器中提供。SSE4的含义是Streaming SIMD Extension 4,SIMD即单指令多数据技术(Single Instruction Multiple Data)。
1868 0
|
存储 弹性计算 缓存
阿里云g8i服务器CPU采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器
阿里云g8i服务器CPU采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器,阿里云服务器ECS通用型实例规格族g8i采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器,3.2 GHz睿频,g8i实例采用阿里云全新CIPU架构,可提供稳定的算力输出、更强劲的I/O引擎以及芯片级的安全加固。阿里云百科分享阿里云服务器ECS通用型g8i实例CPU计算性能、存储、网络、安全、不同CPU内存配置性能参数及使用场景
570 0
阿里云g8i服务器CPU采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器
|
存储 弹性计算 编解码
阿里云ECS服务器g7、c7和r7处理器CPU采用Intel Xeon(Ice Lake) Platinum 8369B
阿里云第七代云服务器ECS计算型c7、通用型g7和内存型r7实例,CPU处理器采用2.7 GHz主频的Intel Xeon(Ice Lake) Platinum 8369B,全核睿频3.5 GHz,计算性能稳定。c7、g7和r7区别CPU内存比,阿里云服务器网来详细说下阿里云第七代云服务器c7、g7和r7实例CPU性能评测:
341 0
|
存储 弹性计算 缓存
阿里云Intel Xeon(Sapphire Rapids) Platinum 8475B处理器CPU
阿里云Intel Xeon(Sapphire Rapids) Platinum 8475B处理器CPU,阿里云服务器ECS通用型实例规格族g8i采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器,3.2 GHz睿频,g8i实例采用阿里云全新CIPU架构,可提供稳定的算力输出、更强劲的I/O引擎以及芯片级的安全加固
1248 0

相关课程

更多