Flume数据传输事务分析

本文涉及的产品
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 1个月
简介: <h2 class="note-title" style="font-family:'Helvetica Neue',Arial,'Hiragino Sans GB',STHeiti,'Microsoft YaHei','WenQuanYi Micro Hei',SimSun,Song,sans-serif; line-height:1.1; color:rgb(22,32,41); ma

Flume数据传输事务分析

本文基于ThriftSource,MemoryChannel,HdfsSink三个组件,对Flume数据传输的事务进行分析,如果使用的是其他组件,Flume事务具体的处理方式将会不同。一般情况下,用MemoryChannel就好了,我们公司用的就是这个,FileChannel速度慢,虽然提供日志级别的数据恢复,但是一般情况下,不断电MemoryChannel是不会丢数据的。

Flume提供事物操作,保证用户的数据的可靠性,主要体现在:

  • 数据在传输到下个节点时(通常是批量数据),如果接收节点出现异常,比如网络异常,则回滚这一批数据。因此有可能导致数据重发
  • 同个节点内,Source写入数据到Channel,数据在一个批次内的数据出现异常,则不写入到Channel。已接收到的部分数据直接抛弃,靠上一个节点重发数据。

编程模型

Flume在对Channel进行Put和Take操作的时候,必须要用事物包住,比如:

Channel ch = new MemoryChannel();
Transaction txn = ch.getTransaction();
//事物开始
txn.begin();
try {

  Event eventToStage = EventBuilder.withBody("Hello Flume!",
                       Charset.forName("UTF-8"));
  //往临时缓冲区Put数据
  ch.put(eventToStage);
  //或者ch.take()

  //将这些数据提交到channel中
  txn.commit();
} catch (Throwable t) {
  txn.rollback();


  if (t instanceof Error) {
    throw (Error)t;
  }
} finally {
  txn.close();
}

Put事务流程

Put事务可以分为以下阶段:

  • doPut:将批数据先写入临时缓冲区putList
  • doCommit:检查channel内存队列是否足够合并。
  • doRollback:channel内存队列空间不足,抛弃数据

我们从Source数据接收到写入Channel这个过程对Put事物进行分析。


ThriftSource会spawn多个Worker线程(ThriftSourceHandler)去处理数据,Worker处理数据的接口,我们只看batch批量处理这个接口:

    @Override
    public Status appendBatch(List<ThriftFlumeEvent> events) throws TException {

      List<Event> flumeEvents = Lists.newArrayList();
      for(ThriftFlumeEvent event : events) {
        flumeEvents.add(EventBuilder.withBody(event.getBody(),
          event.getHeaders()));
      }

        //ChannelProcessor,在Source初始化的时候传进来.将数据写入对应的Channel
        getChannelProcessor().processEventBatch(flumeEvents);
        ...

      return Status.OK;
    }

事务逻辑都在processEventBatch这个方法里:

public void processEventBatch(List<Event> events) {
    ...
    //预处理每行数据,有人用来做ETL嘛
    events = interceptorChain.intercept(events);
    ...
    //分类数据,划分不同的channel集合对应的数据

    // Process required channels
    Transaction tx = reqChannel.getTransaction();
    ...
        //事务开始,tx即MemoryTransaction类实例
        tx.begin();
        List<Event> batch = reqChannelQueue.get(reqChannel);
        for (Event event : batch) {
          // 这个put操作实际调用的是transaction.doPut
          reqChannel.put(event);
        }
        //提交,将数据写入Channel的队列中
        tx.commit();
      } catch (Throwable t) {
        //回滚
        tx.rollback();
        ...
      }
    }
    ...
  }

每个Worker线程都拥有一个Transaction实例,保存在Channel(BasicChannelSemantics)里的ThreadLocal变量currentTransaction.

那么,事务到底做了什么?

实际上,Transaction实例包含两个双向阻塞队列LinkedBlockingDeque(感觉没必要用双向队列,每个线程写自己的putList,又不是多个线程?),分别为:

  • putList
  • takeList

对于Put事物操作,当然是只用到putList了。putList就是一个临时的缓冲区,数据会先put到putList,最后由commit方法会检查channel是否有足够的缓冲区,有则合并到channel的队列。

channel.put -> transaction.doPut:

    protected void doPut(Event event) throws InterruptedException {
      //计算数据字节大小
      int eventByteSize = (int)Math.ceil(estimateEventSize(event)/byteCapacitySlotSize);
      //写入临时缓冲区putList
      if (!putList.offer(event)) {
        throw new ChannelException(
          "Put queue for MemoryTransaction of capacity " +
            putList.size() + " full, consider committing more frequently, " +
            "increasing capacity or increasing thread count");
      }
      putByteCounter += eventByteSize;
    }

transaction.commit:

@Override
    protected void doCommit() throws InterruptedException {
      //检查channel的队列剩余大小是否足够
      ...

      int puts = putList.size();
      ...
      synchronized(queueLock) {
        if(puts > 0 ) {
          while(!putList.isEmpty()) {
            //写入到channel的队列
            if(!queue.offer(putList.removeFirst())) {
              throw new RuntimeException("Queue add failed, this shouldn't be able to happen");
            }
          }
        }
        //清除临时队列
        putList.clear();
        ...
      }
      ...
    }

如果在事务期间出现异常,比如channel剩余空间不足,则rollback:

@Override
    protected void doRollback() {
    ...
        //抛弃数据,没合并到channel的内存队列
        putList.clear();
      ...
    }

Take事务

Take事务分为以下阶段:

  • doTake:先将数据取到临时缓冲区takeList
  • 将数据发送到下一个节点
  • doCommit:如果数据全部发送成功,则清除临时缓冲区takeList
  • doRollback:数据发送过程中如果出现异常,rollback将临时缓冲区takeList中的数据归还给channel内存队列。


Sink其实是由SinkRunner线程调用Sink.process方法来了处理数据的。我们从HdfsEventSink的process方法说起,Sink类都有个process方法,用来处理传输数据的逻辑。:

public Status process() throws EventDeliveryException {
    ...
    Transaction transaction = channel.getTransaction();
    ...
    //事务开始
    transaction.begin();
    ...
      for (txnEventCount = 0; txnEventCount < batchSize; txnEventCount++) {
        //take数据到临时缓冲区,实际调用的是transaction.doTake
        Event event = channel.take();
        if (event == null) {
          break;
        }
        ...
      //写数据到HDFS
      bucketWriter.append(event);
      ...
      // flush all pending buckets before committing the transaction
      for (BucketWriter bucketWriter : writers) {
        bucketWriter.flush();
      }
      //commit
      transaction.commit();
      ...
    } catch (IOException eIO) {
      transaction.rollback();
      ...
    } finally {
      transaction.close();
    }
  }

大致流程图:

接着看看channel.take,作用是将数据放到临时缓冲区,实际调用的是transaction.doTake:

protected Event doTake() throws InterruptedException {
      ...
      //从channel内存队列取数据
      synchronized(queueLock) {
        event = queue.poll();
      }
      ...
      //将数据放到临时缓冲区
      takeList.put(event);
      ...
      return event;
    }

接着,HDFS写线程bucketWriter将take到的数据写到HDFS,如果批数据都写完了,则要commit了:

protected void doCommit() throws InterruptedException {
    ...
    takeList.clear();
    ...
}

很简单,其实就是清空takeList而已。如果bucketWriter在写数据到HDFS的时候出现异常,则要rollback:

protected void doRollback() {
      int takes = takeList.size();
      //检查内存队列空间大小,是否足够takeList写回去
      synchronized(queueLock) {
        Preconditions.checkState(queue.remainingCapacity() >= takeList.size(), "Not enough space in memory channel " +
            "queue to rollback takes. This should never happen, please report");
        while(!takeList.isEmpty()) {
          queue.addFirst(takeList.removeLast());
        }
        ...
      }
      ...
    }
相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
目录
相关文章
|
8月前
|
消息中间件 存储 分布式计算
【Flume】Flume配置文件详细分析
【4月更文挑战第4天】【Flume】Flume配置文件详细分析
|
8月前
|
存储 分布式计算 监控
【Flume】Flume 监听日志文件案例分析
【4月更文挑战第4天】【Flume】Flume 监听日志文件案例分析
|
8月前
|
存储 消息中间件 缓存
【Flume】Flume Agent的内部原理分析
【4月更文挑战第4天】【Flume】Flume Agent的内部原理分析
|
8月前
|
存储 消息中间件 监控
【Flume】Flume在大数据分析领域的应用
【4月更文挑战第4天】【Flume】Flume在大数据分析领域的应用
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
68 2
|
5月前
|
存储 JSON 监控
【Flume大揭秘】揭秘Flume断点续传的黑科技,让你的数据传输从此告别中断,稳如老狗!
【8月更文挑战第24天】Apache Flume是一款由Cloudera开发的分布式、可靠且高可用的日志数据收集系统,特别适用于大规模日志数据的采集、聚合与传输。其断点续传功能在遇到故障或中断时尤为关键,能确保数据传输从上次停止的地方继续进行而无需重头开始。
123 4
|
5月前
|
存储 分布式计算 大数据
【Flume的大数据之旅】探索Flume如何成为大数据分析的得力助手,从日志收集到实时处理一网打尽!
【8月更文挑战第24天】Apache Flume是一款高效可靠的数据收集系统,专为Hadoop环境设计。它能在数据产生端与分析/存储端间搭建桥梁,适用于日志收集、数据集成、实时处理及数据备份等多种场景。通过监控不同来源的日志文件并将数据标准化后传输至Hadoop等平台,Flume支持了性能监控、数据分析等多种需求。此外,它还能与Apache Storm或Flink等实时处理框架集成,实现数据的即时分析。下面展示了一个简单的Flume配置示例,说明如何将日志数据导入HDFS进行存储。总之,Flume凭借其灵活性和强大的集成能力,在大数据处理流程中占据了重要地位。
129 3
|
5月前
|
数据采集 存储 Java
Flume Agent 的内部原理分析:深入探讨 Flume 的架构与实现机制
【8月更文挑战第24天】Apache Flume是一款专为大规模日志数据的收集、聚合及传输而设计的分布式、可靠且高可用系统。本文深入解析Flume Agent的核心机制并提供实际配置与使用示例。Flume Agent由三大组件构成:Source(数据源)、Channel(数据缓存)与Sink(数据目的地)。工作流程包括数据采集、暂存及传输。通过示例配置文件和Java代码片段展示了如何设置这些组件以实现日志数据的有效管理。Flume的强大功能与灵活性使其成为大数据处理及实时数据分析领域的优选工具。
182 1
|
8月前
|
存储 消息中间件 Kafka
【Flume】Flume 核心组件分析
【4月更文挑战第4天】【Flume】Flume 核心组件分析
|
8月前
|
监控 Apache
【Flume】 Flume 区别分析:ExecSource、Spooldir Source、Taildir Source
【4月更文挑战第4天】 Flume 区别分析:ExecSource、Spooldir Source、Taildir Source