小白学数据分析----->留存率的三个普适原则

简介: 关于留存率的文章,现在很多,以下要说的内容实际上算是对于留存率使用的一个小归纳。这篇文章所要阐述的内容其实早在去年就已经形成了,一直没有足够的时间组织起来,因为我觉得虽然简单,不过影响的范畴和可扩展的领域很多。

关于留存率的文章,现在很多,以下要说的内容实际上算是对于留存率使用的一个小归纳。这篇文章所要阐述的内容其实早在去年就已经形成了,一直没有足够的时间组织起来,因为我觉得虽然简单,不过影响的范畴和可扩展的领域很多。值得去思考和借鉴。

留存率存在三个原则

留存率原则之一

不同用户群之间的留存率趋势是一致的

针对这点,其实可扩展的内容很多,比如不同渠道之间的用户留存趋势是一致的,不过不同渠道之间的留存率水平是不一致的,这一点在前一篇文章中已经有涉及过,这里不详细讲述。不同用户群,渠道的留存差异可以作为衡量玩家使用粘度的一个量化。

而说到这点,我再多说一下,往往我们的游戏会有推广时期和自然增长时期,我们可以对比推广时期和自然增长两个时间的用户群的留存率表现,这点其实作用很大,如果我们只是使用一个次日、三日、7日,其实很多时候会规避问题,因此,也建议在做留存率分析,多多进行不同时期的留存率对比,而这点可行的基础就是留存曲线整体上的趋势是一致的。

留存率原则之二

不同产品之间的留存率趋势是一致的。

这一点对于开发者而言,也是具有很大意义的,因为每个公司不止研发一款产品,在系列产品中,用户的留存表现可以帮助开发者理解自己的产品质量,此外我们可以把同一款产品的两次更新当做是两款产品来看待,这样也帮助我们比较前后版本的粘性和质量情况。

再者,留存曲线本身就存在流失期、蒸馏期、稳定期,通过横向,纵向的对比,帮助开发者尽快找到玩家的生命周期长度。同时,这条曲线其实对于渠道而言,也存在很大的意义,因为同一个位置,什么游戏的质量更好一些,我们就可以通过对比多款产品的留存曲线表现,来进行决定,当然这只是渠道在量化最佳位置收益最大化的一个数据分析点,不止于此。

 

留存率原则之三

不同日期之间的留存率趋势是一致的

这点我想是大家最不陌生的,也是我们常用的,如果我们只是每日孤立看待留存率,效果并不是很明显。

对于不同日期的留存率衡量不是只限于两日,也可以是自定义时间点,自定义用户属性(比如时间段内,启动至少3次,这部分在后续文章会说),总的来说,就是要说明,不同时期的用户留存的变化情况,这有利于我们把握不同时间点的推广和投放情况。

相关文章
|
分布式计算 算法 大数据
白话Elasticsearch45-深入聚合数据分析之易并行聚合算法,三角选择原则,近似聚合算法
白话Elasticsearch45-深入聚合数据分析之易并行聚合算法,三角选择原则,近似聚合算法
107 0
|
SQL 安全 数据挖掘
【业务数据分析】—— 用户留存分析(以挖掘Aha时刻为例)
【业务数据分析】—— 用户留存分析(以挖掘Aha时刻为例)
743 0
|
机器学习/深度学习 数据采集 人工智能
Python数据分析 | 数据可视化原则与方法
数据可视化是以图示或图形格式表示的数据,以更直观方式理解与分析数据。本篇内容,我们给大家介绍数据分析中关于可视化的一些核心知识,包括:各类图形及特点,不同图形选择方法。
452 0
Python数据分析 | 数据可视化原则与方法
|
数据采集 数据挖掘
《数据分析实战:基于EXCEL和SPSS系列工具的实践》一3.1 数据采集的几条重要原则
本节书摘来华章计算机《数据分析实战:基于EXCEL和SPSS系列工具的实践》一书中的第3章 ,第3.1节,纪贺元 著 更多章节内容可以访问云栖社区“华章计算机”公众号查看。 3.1 数据采集的几条重要原则 3.1.1 要足够“复杂” 先说一个跟客户接触的例子。
1538 0
|
数据挖掘
小白学数据分析----->什么才是留存率的关键?
最近花了很多的时间在体验各种游戏,从火爆的卡牌,到策略,RPG等等,有一个问题在影响我,什么才是留存率的关键?今天就先讨论一些我的想法。 留存率已经成为大家最常提到的词汇,也是拿出来show一下的武器,不过一个困扰的问题在于,什么影响了留存,怎么优化留存。
1102 0
|
数据挖掘
小白学数据分析----->留存率与运营活动分析_I
有关留存率的事情最近扯得比较多,因为在分析数据的时候,越发觉得,分析一定是要来解决问题的,留存率不知何时突然变得流行了,在此讨论留存率倒不是因为流行,而是觉得以留存率为核心,的确是可以帮助我们解决不少的问题,但前提是,不要只停留在你所知道的次日,3日,7日留存率就OK,因为纵然你知道与benchmarks是差距,如果只抱着这个指标,你依然不知道自己该怎么做。
1077 0
|
数据挖掘 UED
小白学数据分析----->留存率使用的窘境_I
随着移动游戏整体的火热,现在看到太多的数据,太多信息,很多时候我们仰慕和钦佩别人的成功,我们总是把这个行业达成所谓共识的一些数据来出来说明问题。因为我们笃信数据是有力的证据,并且可以说明实力。然而太多的时候,因为沾染了更多的外在气氛,以至于在一些情况下看不到自己接下来的清晰的方向。
1108 0
|
数据挖掘
小白学数据分析----->留存率分析_I[次日留存率突然下降了50%?]
最近在做留存分析时,遇到了不少的情况,也经常会有人问我,为什么我的游戏突然次日留存率降了一半。如果留存率是单单作为一个简单的指标的话,那对你价值还是蛮有限的,今天就和大家说说一个case,这是不久前解决掉的问题,相信会帮助不少人。
1310 0