小白学数据分析----->ARPDAU的价值

简介: 最近盛大刚刚发布了财报,有人给我打电话问什么是ARPDAU?ARPDAU能够起到什么作用?本文就这个问题给大家解析一下ARPDAU。在讲ARPDAU之前,有两个概念大家应该很清楚,一个是ARPU,另一个是ARPPU,如果有不清楚的同学请查看《移动游戏数据分析白皮书》。

最近盛大刚刚发布了财报,有人给我打电话问什么是ARPDAU?ARPDAU能够起到什么作用?本文就这个问题给大家解析一下ARPDAU。在讲ARPDAU之前,有两个概念大家应该很清楚,一个是ARPU,另一个是ARPPU

首先我们明确ARPDAU的定义:日活跃用户的平均收益,Avg. Revenue Per DAU;计算方式为,ARPDAU=每日总收入/每日活跃用户数。

为什么要有ARPDAU?

在移动端市场由于移动游戏的用户忠诚度不够高,流动性强,手游产品生命周期短,推广费增长迅速、推广周期短的因素所以我们不能再以ARPU或者ARPPU这种按周或者月为维度的衡量方式来进行计算。ARPDAU其实是在更加短的时间间隔内对游戏的收益能力与用户量之间寻找一个桥梁。

 

从下面的公式中可看到其作用:

Revenue=DAU*ARPDAU

上述公式是对每天收入的一种计算模式,如果按照用户生命周期来做衡量则变成:

E_Revenue=DAU*ARPDAU*E_LT

注:E为期望,LT为生命周期

综上我们可以得到,在用户规模和平均收益固定的前提下,可以根据生命周期长度的变化来确定收入规模,这点其实是我们平时最常去考虑的。

其实上述公式在海外已经多次被讨论过,用户规模、用户生命周期、产品质量和渠道推广这几点都是对这个公式的直接反馈。就ARPDAU来看,我们可以理解为下面的一句话:每当游戏产生一个有效的活跃用户,则单日为游戏贡献收入为ARPDAU,如果有效活跃用户的生命周期为LT,则单个用户全生命周期内贡献的收入为LT*ARPDAU。

由此可见,ARPDAU已成为衡量游戏收益能力的一个新指标。ARPDAU直接反馈在推广阶段,是一个有效活跃用户预期收益能力的表现。为什么这样说,因为一个有效活跃用户每活跃一天产生的收入就是ARPDAU,如果留存效果比较好,生命周期比较长,那么单个活跃用户在生命周期内贡献的收入就是ARPDAU与LT的乘积。这一点如果和CPA结合起来,就可以去衡量近来的一个有效CPA与ARPDAU*LT之间的大小。

DAU

无论是重计费游戏还是轻计费游戏,都想把用户规模做到一定的量级。从这个公式中能够看到,在ARPDAU较低的情况下,生命周期长度和用户规模都成为保障收入的支撑;其次有效用户群不仅代表推广阶段较好的用户质量,同时也是产品质量的重要体现。

就DAU而言,我们需要进一步了解DAU的结构和质量。因为DAU是最直接影响未来的用户生命周期和提升付费概率的因素(比如DAU中,优质用户不断的积累)。

小白ARPDAU

 

LT

用户生命周期,一方面是对近来推广的用户质量体现,同时也是产品黏度和质量的重要衡量指标。如果要在三个参数打上标签,我觉得下面的标签算是一个例子:

小白ARPDAU2

 ARPDAU

Jon Walsh说,“从游戏类型来看,有的游戏属于高转化率游戏,这类游戏付费转化率高,但是ARPPU低;有的游戏属于高付费游戏,这类游戏付费转化率低,但是ARPPU高。“不过如果你去从ARPDAU的角度去看待的时候,你会发现不必考虑付费用户的付费结构和规模,从而快速通过生命周期和规模衡量收益能力。

相关文章
|
5月前
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
271 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
5月前
|
存储 数据挖掘 数据处理
DataFrame探索之旅:如何一眼洞察数据本质,提升你的数据分析能力?
【8月更文挑战第22天】本文通过电商用户订单数据的案例,展示了如何使用Python的pandas库查看DataFrame信息。首先导入数据并使用`head()`, `columns`, `shape`, `describe()`, 和 `dtypes` 方法来快速概览数据的基本特征。接着,通过对数据进行分组操作计算每位顾客的平均订单金额,以此展示初步数据分析的过程。掌握这些技能对于高效的数据分析至关重要。
59 2
|
5月前
|
数据采集 算法 数据可视化
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
本文设计并实现了一个基于Python网络爬虫和机器学习模型的今日头条新闻数据分析与热度预测系统,通过数据采集、特征工程、模型构建和可视化展示,挖掘用户行为信息和内容特征,预测新闻热度,为内容推荐和舆情监控提供决策支持。
227 0
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
|
SQL 存储 数据挖掘
ChatGPT 数据仓库实战:Kaggle 酒店入住数据分析与维度建模
ChatGPT 数据仓库实战:Kaggle 酒店入住数据分析与维度建模
|
数据采集 数据可视化 数据挖掘
数据分析案例-旅游景点票价预测
数据分析案例-旅游景点票价预测
339 0
数据分析案例-旅游景点票价预测
|
数据挖掘
小白学数据分析----->DNU/DAU
行业指标观察分析-DNU/DAU 写在分析之前 一直以来,我们对于数据都是在做加法,也希望这个过程中,不断搜罗和变换出来更多的数据指标,维度等等。而在实际的分析中,我们发现,一如我们给用户提供产品一样,太多的时候,我们思考的是如何增加功能,而产品的核心功能和诉求,却越来越远。
1748 0
|
数据挖掘
小白学数据分析----->ARPPU的误区
新年到来,该应该持续坚持写下去,还是有很多人要来学习和进步的。 今天提到了一个概念:ARPPU。 这个概念等同于之前大家认识的ARPU(其实这句话我是很不愿意说的),ARPPU是总收入除以总付费用户数,得到的每个付费用户的平均收益。
980 0
|
数据挖掘 UED 算法
小白学数据分析----->如何设计和分析数据指标
今天说到的这个题目,看起来有点大,不过作为游戏数据分析师,早晚都要设计和分析数据指标。在《移动游戏运营数据分析指标白皮书》(http://www.xuefenxi.com/forum.php?mod=viewthread&tid=2&extra=page%3D1)中,提炼了一些针对游戏数据分析的指标,这只是分析工作的第一步,还要有效的组织起来,并按照需求进行细分,即按需进行二次设计和分析。
1187 0