Python深入04 闭包

简介: 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!   闭包(closure)是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式)。

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

 

闭包(closure)是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式)。在面向过程编程中,我们见到过函数(function);在面向对象编程中,我们见过对象(object)。函数和对象的根本目的是以某种逻辑方式组织代码,并提高代码的可重复使用性(reusability)。闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性。

不同的语言实现闭包的方式不同。Python以函数对象为基础,为闭包这一语法结构提供支持的 (我们在特殊方法与多范式中,已经多次看到Python使用对象来实现一些特殊的语法)。Python一切皆对象,函数这一语法结构也是一个对象。在函数对象中,我们像使用一个普通对象一样使用函数对象,比如更改函数对象的名字,或者将函数对象作为参数进行传递。

 

函数对象的作用域

和其他对象一样,函数对象也有其存活的范围,也就是函数对象的作用域。函数对象是使用def语句定义的,函数对象的作用域与def所在的层级相同。比如下面代码,我们在line_conf函数的隶属范围内定义的函数line,就只能在line_conf的隶属范围内调用。

def line_conf():
    def line(x):
        return 2*x+1
    print(line(5))   # within the scope


line_conf()
print(line(5))       # out of the scope

line函数定义了一条直线(y = 2x + 1)。可以看到,在line_conf()中可以调用line函数,而在作用域之外调用line将会有下面的错误:

NameError: name 'line' is not defined

说明这时已经在作用域之外。

 

同样,如果使用lambda定义函数,那么函数对象的作用域与lambda所在的层级相同。

 

闭包

函数是一个对象,所以可以作为某个函数的返回结果

def line_conf():
    def line(x):
        return 2*x+1
    return line       # return a function object

my_line = line_conf()
print(my_line(5))       

上面的代码可以成功运行。line_conf的返回结果被赋给line对象。上面的代码将打印11。

 

如果line()的定义中引用了外部的变量,会发生什么呢?

def line_conf():
    b = 15
    def line(x):
        return 2*x+b
    return line       # return a function object

b = 5
my_line
= line_conf() print(my_line(5))

我们可以看到,line定义的隶属程序块中引用了高层级的变量b,但b信息存在于line的定义之外 (b的定义并不在line的隶属程序块中)。我们称b为line的环境变量。事实上,line作为line_conf的返回值时,line中已经包括b的取值(尽管b并不隶属于line)。

上面的代码将打印25,也就是说,line所参照的b值是函数对象定义时可供参考的b值,而不是使用时的b值。

 

一个函数和它的环境变量合在一起,就构成了一个闭包(closure)。在Python中,所谓的闭包是一个包含有环境变量取值的函数对象。环境变量取值被保存在函数对象的__closure__属性中。比如下面的代码:

def line_conf():
    b = 15
    def line(x):
        return 2*x+b
    return line       # return a function object

b = 5
my_line = line_conf()
print(my_line.__closure__)
print(my_line.__closure__[0].cell_contents)

__closure__里包含了一个元组(tuple)。这个元组中的每个元素是cell类型的对象。我们看到第一个cell包含的就是整数15,也就是我们创建闭包时的环境变量b的取值。

 

下面看一个闭包的实际例子:

def line_conf(a, b):
    def line(x):
        return a*x + b
    return line

line1 = line_conf(1, 1)
line2 = line_conf(4, 5)
print(line1(5), line2(5))

这个例子中,函数line与环境变量a,b构成闭包。在创建闭包的时候,我们通过line_conf的参数a,b说明了这两个环境变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。

如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。利用闭包,我们实际上创建了泛函。line函数定义一种广泛意义的函数。这个函数的一些方面已经确定(必须是直线),但另一些方面(比如a和b参数待定)。随后,我们根据line_conf传递来的参数,通过闭包的形式,将最终函数确定下来。

 

闭包与并行运算

闭包有效的减少了函数所需定义的参数数目。这对于并行运算来说有重要的意义。在并行运算的环境下,我们可以让每台电脑负责一个函数,然后将一台电脑的输出和下一台电脑的输入串联起来。最终,我们像流水线一样工作,从串联的电脑集群一端输入数据,从另一端输出数据。这样的情境最适合只有一个参数输入的函数。闭包就可以实现这一目的。

并行运算正称为一个热点。这也是函数式编程又热起来的一个重要原因。函数式编程早在1950年代就已经存在,但应用并不广泛。然而,我们上面描述的流水线式的工作并行集群过程,正适合函数式编程。由于函数式编程这一天然优势,越来越多的语言也开始加入对函数式编程范式的支持。

 

欢迎继续阅读“Python快速教程

 

 

目录
相关文章
|
1月前
|
Python
闭包(Closure)是**Python中的一种高级特性
闭包(Closure)是**Python中的一种高级特性
44 8
|
2月前
|
存储 缓存 算法
Python闭包|你应该知道的常见用例(下)
Python闭包|你应该知道的常见用例(下)
32 1
Python闭包|你应该知道的常见用例(下)
|
2月前
|
自然语言处理 小程序 测试技术
Python闭包|你应该知道的常见用例(上)
Python闭包|你应该知道的常见用例(上)
32 3
Python闭包|你应该知道的常见用例(上)
|
6月前
|
监控 测试技术 Python
颠覆传统!Python闭包与装饰器的高级实战技巧,让你的项目效率翻倍
【7月更文挑战第7天】Python的闭包与装饰器是强大的工具。闭包是能记住外部作用域变量的内部函数,常用于动态函数创建和工厂模式。例如,`make_power`返回含外部变量`n`的`power`闭包。装饰器则允许在不修改函数代码的情况下添加新功能,如日志或性能监控。`my_decorator`函数接收一个函数并返回包装后的函数,添加了前后处理逻辑。掌握这两者,可提升编程效率和灵活性。
48 3
|
3月前
|
Python
深入理解Python中的闭包
深入理解Python中的闭包
43 0
|
6月前
|
存储 安全 Java
在python中使用闭包和其他惯例
【7月更文挑战第3天】本文介绍闭包基本概念和例子,内部函数访问外部变量,实现数据隐藏。以及 Python的惯用法:用`in`检查字典键,用`dict.get()`安全取值。
53 1
在python中使用闭包和其他惯例
|
5月前
|
数据安全/隐私保护 Python
Python闭包:函数定义的神秘力量!
Python闭包:函数定义的神秘力量!
65 0
|
6月前
|
程序员 Python
从零到一,彻底掌握Python闭包与装饰器的精髓,成为编程界的隐藏Boss
【7月更文挑战第7天】探索Python编程的两大基石:闭包与装饰器。闭包是内部函数记住外部作用域的变量,如`make_multiplier_of`返回的`multiplier`,它保持对`n`的引用。装饰器则是函数工厂,接收函数并返回新函数,如`my_decorator`,它在不改变原函数代码的情况下添加日志功能。掌握这些,让代码更优雅,效率更高,助你成为编程高手。
39 3
|
6月前
|
程序员 Python
程序员必看!Python闭包与装饰器的高级应用,让你的代码更优雅、更强大
【7月更文挑战第7天】Python中的闭包和装饰器是高级特性,用于增强代码功能。闭包是内部函数记住外部作用域的变量,常用于动态函数和函数工厂。示例展示了`make_multiplier_of`返回记住n值的`multiplier`闭包。装饰器则是接收函数并返回新函数的函数,用于不修改原函数代码就添加功能。`my_decorator`装饰器通过`@`语法应用到`say_hello`函数上,展示了在调用前后添加额外行为的能力。这两种技术能提升代码的优雅性和效率。
46 3
|
6月前
|
Python
Python编程实战:利用闭包与装饰器优化日志记录功能
【7月更文挑战第7天】Python的闭包和装饰器简化了日志记录。通过定义如`log_decorator`的装饰器,可以在不修改原函数代码的情况下添加日志功能。当@log_decorator用于`add(x, y)`函数时,调用时自动记录日志。进一步,`timestamp_log_decorator`展示了如何创建特定功能的装饰器,如添加时间戳。这些技术减少了代码冗余,提高了代码的可维护性。
79 1